Title: Things
1Prof. Neil Gershenfeld Director http//cba.mit.e
du/neilg NSF CCR-0122419
2Programmable Self-Assembly
code (Butera)
amino acid nanotubes (Zhang)
adlayer on monolayer (Mosley)
building components (Sass)
tiles (Griffith)
3Graphical Algorithms
- Kalman filter recursive
- Hidden Markov model Baum-Welch
- Trellis decoder Viterbi
- Density estimation Expectation-Maximization
- FFT divide-and-conquer
- ...
- problem statement? efficient algorithm ?
distributed implementation
4Graphical Networks
5Factor Graphs
(Andi Loeliger, )
p(x,y,c) p(yx,c) p(xc) p(c)
p(c)
c
p(xc)
p(yx,c)
y
x
6Exponential Estimation
marginalization
maximization
7Sub-Exponential Estimation?
marginalization
maximization
factorization
8Semirings
(Ali and McEliece)
sum-product
max-sum
(inference)
(coding)
9Recursion
Fm
fm
xi
Fn
fn
Gj
xj
10Sum Product
Belief propagation, , (Loeliger, Yedidia, )
xj
fm
xi
fn
11Resistors
v1
R1
v1
v2
R2
v1-v2 IR1
v3
v1
v1
v2
I
p(v1,v2 ,I)
R
I
v2-v2 IR2
v2
v2
v3
12Estimation
p(yn1)
p(yn)
yn1
yn
p(yn1xn1)
p(ynxn)
ML
xn1
xn
p(xn1xn)
p(xn2xn1)
recursive
MAP
13Feedback,Entrainment
(Ben Vigoda)
xn
yn
p(xn1xn)
p(ynxn)
14PLL
p(ynxn)
yn
yn1
yn1
15Thermodynamics
(Jonathan Yedidia)
16Bethe Approximation
(Yedidia)
fn
xi
17VariableStretching
y
y
f
g
f
g
x
z
x,z
x,z
h
h
y
y
f
g
h
fgh
x,z
x,z
18SpanningTrees
y
y
f
g
f
g
x
z
x
z
h
h
x,y
f
g
x
x,z
h
19Fourier Transform Sum-Product
20Fourier TransformFactor Graph
y2
y1
y0
x0
f
x1
x2
21GBPFFT
y2
y1
y0
A
B
C
x0
f
E
D
x1
F
x2
E
B
f
F
D
A
x2 ,x1 ,x0
y0 ,x1 ,x0
y0 ,y1 ,x0
y0 ,y1 ,y2
C
f
F
ABC
DE
x2 ,x1 ,x0
y0 ,x1 ,x0
y0 ,y1 ,x0
y0 ,y1 ,y2
log N
22Proofs
- P
- easy to evaluate
- easy to obtain
- NP
- easy to evaluate
- not necessarily easy to obtain
- coNP
- not possible to obtain
23coNP Bounds
(Parrilo, Doyle)
- Prove polynomial non-negativity
- NP-hard
- Seek sum of squares decomposition (SOS)
- Hilbert problem
- Apply Positivstellensatz
- Polynomial expansion of candidates
- Generate relaxations
- Enlarge problem space
- Pose as semidefinite program (SDP)
- Convex linear programming with semidefinite
matrices - Test with interior point method
- Polynomial time