The Arithmetic Operations - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

The Arithmetic Operations

Description:

N.B: In each of the above cases : Zero, Sign, Carry/Borrow ... (Fed Thro MUX) A / NOT A. Operand # 2 (Fed Thro MUX) B / NOT B / 0...0 / 1...1. n. OVERFLOW ... – PowerPoint PPT presentation

Number of Views:124
Avg rating:3.0/5.0
Slides: 22
Provided by: psd1
Category:

less

Transcript and Presenter's Notes

Title: The Arithmetic Operations


1
The Arithmetic Operations
  • Addition (with Carry without Carry).
  • Subtraction (with Borrow without Borrow).
  • Compare ( Subtract without storing Result).
  • Adjusting Result Unary.
  • Increment .
  • Decrement .
  • 2s Complement Unary.
  • 1s Complement Unary.
  • N.B In each of the above cases Zero, Sign,
    Carry/Borrow Overflow Flags are also to be
    generated correctly.

2
The Arithmetic Operations Operands
  • BINARY OPERATIONS (for both SIGNED
    UNSIGNED)
  • Sl. No. Operation O/P Logical Expression
    ALU Function Code
  • 1. ADD with Cy A PLUS
    B PLUS Cy_Flag 0 0 0 0
    0
  • 2. SUBTRACT A PLUS (NOT B)
    PLUS (NOT Cy_Flag) 0 0 0 0 1
  • with BORROW
  • 3. COMPARE A PLUS (NOT B)
    PLUS (C_In 1) 0 0 0 1 0
  • All Flags are set.
    Result generated is IGNORED
  • 4. INCREMENT A PLUS (B 00)
    PLUS (C_In 1) 0 0 0 1 1

  • Inhibit affecting Cy OV Flags
  • 5. DECREMENT A PLUS (B1.1) PLUS
    (C_In 0) 0 0 1 0 0

  • Inhibit affecting Cy OV Flags
  • UNARY OPERATIONS (Applicable for
    BIT Operands) ALU Function Code
  • 6. COMPL A ( NOT A) PLUS
    (B0..0) PLUS (C_In1) 0 0 1 0 1
  • 7. PASS A A PLUS
    (B0. 0) PLUS (C_In0) 0 0 1 1 0
  • 8. NOT A ( NOT A)
    PLUS (B0 0) PLUS (C_In0) 0 0 1 1 1
  • _

3
The Adder cum SUBTRACTER Unit

Operand 1 (Fed Thro MUX) A / NOT A
Operand 2 (Fed Thro MUX) B / NOT B / 00 / 11
n
n

Cy_Flag / 0 / 1/ NOT (Cy_Flag) Thro MUX
CARRY/BORROW
n Bit ADDER
n bit Arithmetic Result C
OVERFLOW
N.B Op Codes are used as various MUX Controls
4
The Selection Logic of Operand 1

n bits
A
NOT A
8 1, n bit Group Mux
S 2
S 1
S 0
To Adder I/P Operand 1
n bits
5
The Selection Logic of Operand 2
From n bit wide Inputs

0
1
B
NOT B
8 1, n bit Group Mux
S 2
S 1
S 0
To Adder I/P Operand 2
n bits
6
The Selection Logic of CY
From 1 bit wide Inputs

0
1
Cy
NOT Cy
8 1, 1 bit Mux
S 2
S 1
S 0
To Adder Cin Input
1 bit
7
Inside the n bit Adder

Op1(i-1)
Op1i
Op10
Op2i
Op2(n-1)
Op2(i1)
Op2(i-1)
Op20

Op1(n-1)
Op1(i1)
1 bit ADDER
1 bit ADDER
1 bit ADDER
1 bit ADDER
1 bit ADDER
Cy(i)
Cy(i-1)
Cy0

c0
Cy(i1)
c(n-1)
c(i1)
ci
c(i-1)
Cy(i-2)
OvFl
Cy_in C_In
Cy(n-2)
Cyout
8
A typical Adder Cell Structure

Inputs to the ith Stage
Op1 i
Op2 i
The ith Adder Cell
Cy(i-1) generated by The Previous (i-1) th
Stage
Cy(i) fed To the NEXT (i1) th Stage
ith Bit of the Result ci Sumi
9
Adder Table
  • Op1i Op2i CY(i-1) CY(i) Sumi
  • --------------------------------------------------
    -----------
  • 0 0 0 0
    0
  • -----------------------------------------
  • 0 0 1 0 1
  • ------ -------------------------------------------
    ------------
  • 0 1 0 0
    1
  • -------------------------------------------
  • 0 1 1 1 0
  • --------------------------------------------------
    ------------
  • 1 0 0 0 1
  • -----------------------------------------
  • 1 0 1 1 0
  • --------------------------------------------------
    -----------
  • 1 1 0 1
    0
  • -------------------------------------------
  • 1 1 1 1 1

10
Limitations of this Cell
  • 1) Outputs generated Result Sumi as well as
    Cy(i) depend not only on the Current Inputs but
    are also dependent on the Previous Stage output
    Cy(i-1) which represents one of the inputs.
  • 2) The carry / borrow input to any stage
    depends on ALL its previous stages output thereby
    forcing a Rippling Effect, in which case each
    ADDER stage contributes to the output generation
    time of all the next stages.
  • 3) Worst Case Delay (due to rippling of Carry)
    happens to be n stage delay for any n bit
    Adder/SUBTRACTER.
  • Objective To reduce this delay by exploring
    alternative schemes of Carry Generation.

11
The Output Logical Expressions
  • The Sum / Result Output
  • Sumi Op1i ? Op2i ? Cy(i-1) ----- a
  • The Carry Output
  • Cy i Op1i .Op2i Cy(i-1).(Op1i Op2i )- b
  • gi Cy(i-1). pi ---- c
  • Where gi Local Carry Generate Op1i .Op2i -
    d
  • pi Prev. Carry Propagate Op1i Op2i - e
  • It can be shown that Sumi gi ? pi ? Cy(i-1)
    ----- f
  • Proof left as an exercise
  • N.B Both gi pi depends on the Current stage
    Inputs only.

12
The Output Logical Expressions for 1st bit
(LSBs) of a 4 bit Adder
  • The Sum / Result Output
  • Sum0 Op10 ? Op20 ? Cin ----- a0
  • The Carry Output
  • Cy 0 Op10 .Op20 Cin.(Op10 Op20 )- b0
  • g0 Cin. p0 ---- c0
  • Where g0 Local Carry Generate Op10 .Op20 -
    d0
  • p0 Prev. Carry Propagate Op10 Op20- e0
  • Sum0 g0 ? p0 ? Cin ----- f0

13
The Output Logical Expressions for 2nd bits
of a 4 bit Adder
  • The Sum / Result Output
  • Sum1 Op11 ? Op21 ? CY0 ----- a1
  • The Carry Output
  • Cy 1 Op11 .Op21 CY0.(Op11 Op21 )- b1
  • g1 CY0. P1 - c1
  • g1 (g0 Cin. p0). p1 (From c0) c11
  • Where g1 Local Carry Generate Op11 .Op21 -
    d1
  • p1 Prev. Carry Propagate Op11 Op21- e1
  • Sum1 g1 ? p1 ? CY0 , after substitution
  • Sum1 g1 ? p1 ? (g0 Cin. p0) ----- f1

14
The Output Logical Expressions for 3rd bits
of a 4 bit Adder
  • The Sum / Result Output
  • Sum2 Op12 ? Op22 ? CY1 ----- a2
  • The Carry Output
  • Cy 2 Op12 .Op22 CY1.(Op12 Op22 )- b2
  • g2 CY1. P2 g2 (g1 CY0. p1). p2
    ( From c1)
  • g2 (g1 (g0 Cin. p0). p1). p2 c2
  • Where g2 Local Carry Generate Op12 .Op22 -
    d2
  • p2 Prev. Carry Propagate Op12 Op22- e2
  • Sum2 g2 ? p2 ? CY1, after substitution
  • Sum2 g2 ? p2 ? (g1 (g0 Cin. p0). p1) -----
    f2

15
The Output Logical Expressions for 4th bits
MSBs of a 4 bit Adder
  • The Sum / Result Output
  • Sum3 Op13 ? Op23 ? CY2 ----- a3
  • The Carry Output
  • Cy 3 Op13 .Op23 CY2.(Op13 Op23 )- b3
  • g3 CY2. p3
  • After substituting from c2
  • g3 (g2 (g1 (g0 Cin. p0). p1). p2).
    p3 c3
  • Where g3 Local Carry Generate Op13 .Op23 -
    d3
  • p3 Prev. Carry Propagate Op13 Op23- e3
  • Sum3 g3 ? p3 ? CY2 after substitution
  • Sum3 g3 ? p3 ? (g2 (g1 (g0 Cin. p0). p1).
    p2)- f3

16
The Simultaneous Carry Cy Generation Scheme

Op1(n-1)
Op1(i1)
Op1(i)
Op1(i-1)
Op1(0)
Op2(n-1)
Op2(i-1)
Op2(0)
Op2(i1)
Op2(i)
P-G Gen
P-G Gen
P-G Gen
P-G Gen
P-G Gen
g(i-1)
p(n-1)
p(i1)
p(i-1)
g(n-1)
g(i1)
g(0)
p(0)
p(i)
g(i)
Carry Generator Block
Cin
Cy(i1)
Cy(i)
Cy(i-1)
Cy (0)
Cy OUT
17
The Sum Generation Scheme

Op1(n-1)
Op1(i1)
Op1(i)
Op1(i-1)
Op1(0)
Op2(n-1)
Op2(i-1)
Op2(0)
Op2(i1)
Op2(i)
P-G Gen
P-G Gen
P-G Gen
P-G Gen
P-G Gen
g(i-1)
p(n-1)
p(i1)
p(i-1)
g(n-1)
g(i1)
g(0)
p(0)
p(i)
g(i)
Sum Generator Block
Cin
Sum(i1)
Sum(i)
Sum(i-1)
Sum (0)
Sum(n)
18
The Overflow Generation - 1
  • Op1(n-1) Op2(n-1) C(n-1)
    OpR OVFLow
  • --------------------------------------------------
    -----------------------


  • ( 0 ? ADD , 1 ? SUB)
  • --------------------
    ---------------------------------------
  • 0
    0 0 0 0

  • ------ -------------------------------------------
    -----------------------------------

  • 0 0 1
    0 1
  • --------------------
    --------------------------------------
  • 0
    1 X 0 0

  • --------------------------------------------------
    ---------------------------------
  • 1
    0 X 0 0
  • -------------------
    --------------------------------------
  • 1
    1 1 0 0

  • --------------------------------------------------
    -------------------------------

  • 1 1 0
    0 1
  • -------------------
    ------------------------------------

19
The Overflow Generation - 2
  • Op1(n-1) Op2(n-1) C(n-1)
    OpR OVFLow
  • --------------------------------------------------
    -----------------------


  • ( 0 ? ADD , 1 ? SUB)
  • --------------------
    ---------------------------------------
  • 0
    0 X 1 0

  • ------ -------------------------------------------
    -----------------------------------

  • 0 1 0
    1 0
  • --------------------
    --------------------------------------
  • 0
    1 1 1 1

  • --------------------------------------------------
    ---------------------------------
  • 1
    1 X 1 0
  • -------------------
    --------------------------------------
  • 1
    0 1 1 0

  • --------------------------------------------------
    -------------------------------

  • 1 0 0
    1 1
  • -------------------
    ------------------------------------

20
The Overflow Generation - 3
  • Overflow Cyout(n-1) ? cyi(n-2) ----- 1
  • i.e. Overflow Cy out of Sign ? Cy into Sign
  • Provided Carry into Sign bit I.e. carry into
    msbit becomes accessible.
  • Proof Left as an Exercise

21
The Flag Generation Schemes
  • Sign Flag Msbit of Result.
  • Zero Flag c(n-1) OR c(n-2) OR ..
  • ci OR c(i1) OR .. C0
  • Carry/Borrow Flag As generated.
  • Overflow Flag As generated
Write a Comment
User Comments (0)
About PowerShow.com