Number systems and codes - PowerPoint PPT Presentation

About This Presentation
Title:

Number systems and codes

Description:

Why has arithmetic evolved around radix 10? Which radix do you think is the 'most efficient' ... If source radix rS destination radix rD then ... – PowerPoint PPT presentation

Number of Views:75
Avg rating:3.0/5.0
Slides: 11
Provided by: elkotc
Category:
Tags: codes | number | radix | systems

less

Transcript and Presenter's Notes

Title: Number systems and codes


1
Number systems and codes
  • Number systems
  • Ordered set of symbols or digits, with defined
    relations for ? ? ?
  • Radix (base) r
  • Total of symbols allowed in system
  • Decimal 10 digits 09 radix 10
  • Binary 2 digits 0, 1 radix 2

2
Number systems and codes
  • Positional notation
  • N (an-1 an-2 --- a0 . a-1 --- a-m)
  • Algebraic value of N ?
  • N1 (1357.46)10
  • N1 evaluated as ?

3
Number systems and codes
  • N a polynomial of radix r
  • For radix r, digit set is 0, --- ?
  • Hexadecimal r 16
  • Digit set 0, --- ?
  • Why has arithmetic evolved around radix 10?
  • Which radix do you think is the most efficient?

4

3500 BC, Egyptians, nonpositional 2500 BC,
Sumerians, positional, base 60 Today
5
Numeric conversions
binary to octal 10111011001 --gt 10 111 011 001
--gt 2731 (substitution) binary to hex
10111011001 --gt 101 1101 1001 --gt
5D9 (substitution) binary to decimal 10111011001
--gt 1 (1024) 0 (512) 1 (256) 1 (128) 1
(64) 0 (32) 1 (16) 1 (8) 0 (4) 0
(2) 1 (1) 1497 (summation)
hex to binary 5D9 --gt 0101 1101 1001 --gt
10111011001 (substitution) hex to octal 5D9
--gt 0101 1101 1001 --gt 010 111 011 001 --gt
2731 (substitution) hex to decimal 5D9 --gt 5
(256) 13 (16) 9 (1) 1497 (summation)
octal to binary 2731 --gt 010 111 011 001 --gt
10111011001 (substitution) octal to hex
2731 --gt 010 111 011 001 --gt 0101 1101 1001 -gt
5D9 (substitution) octal to decimal 2731 --gt 2
(512) 7 (64) 3 (8) 1 (1) 1497 (summation)
6
Base conversions
  • (10111)2 (?)10
  • 20 21 22 24 23
  • (274)8 (?)10
  • (A)rS (?)rD

7
Base conversions
  • If source radix rS lt destination radix rD then
  • Every digit in the source number system is also a
    digit in the destination number system simply
    evaluate polynomial in destination number system
  • If source radix rS gt destination radix rD
  • (97)10 ( ? )2
  • N dn-1rSn-1 d0rS0
  • yp-1rDp-1 y0rD0
  • Q How do we find the yp-1y0 coefficients?

8
Base conversions
  • Q1
  • N (yp-1rDp-2 y1)rD y0
  • ? N modulo rD y0
  • Q1 modulo rD y1
  • Q2 modulo rD y2
  • When do we stop?

9
Base conversions
  • Q N i 0
  • While (Q ? 0) do
  • digit i Q mod rD
  • Q Q/rD
  • End-while
  • Division is expensive.
  • Question is there a way to avoid division
    (replace it with , ?, ? and possibly some table
    lookups?

10
Converting fractions
  • f d-1rS-1 d-2rS-2 y-1rD-1
    y-2rD-2
  • frD y-1 y-2rD-1
  • Integer fractional
  • ? ?frD? y-1 ?n? floor
  • ?f1rD? y-2
  • .................. When do we stop?


Write a Comment
User Comments (0)
About PowerShow.com