NUMBER SYSTEMS AND CODES - PowerPoint PPT Presentation

About This Presentation
Title:

NUMBER SYSTEMS AND CODES

Description:

NUMBER SYSTEMS AND CODES Outline Number systems Number notations Arithmetic Base conversions Signed number representation Codes Decimal codes Gray code Error ... – PowerPoint PPT presentation

Number of Views:258
Avg rating:3.0/5.0
Slides: 45
Provided by: Ongard
Learn more at: http://cms.dt.uh.edu
Category:

less

Transcript and Presenter's Notes

Title: NUMBER SYSTEMS AND CODES


1
NUMBER SYSTEMS AND CODES
2
Outline
  • Number systems
  • Number notations
  • Arithmetic
  • Base conversions
  • Signed number representation
  • Codes
  • Decimal codes
  • Gray code
  • Error detection code
  • ASCII code

3
Number Systems
  • The decimal (real), binary, octal, hexadecimal
    number systems are used to represent information
    in digital systems. Any number system consists
    of a set of digits and a set of operators (, ?,
    ?, ?).

4
Radix or Base
 
 
The radix or base of the number system denotes
the number of digits used in the system.
Decimal (base 10) 0 1 2 3 4 5 6 7 8 9
Binary (base 2) 0 1
Octal (base 8) 0 1 2 3 4 5 6 7
Hexadecimal (base 16) 0 1 2 3 4 5 6 7 8 9 A B C D E F
 
 
5
Decimal Binary Octal Hexadecimal
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
6
Positional Notation
  • It is convenient to represent a number using
    positional notation. A positional notation is
    written as a sequence of digits with a radix
    point separating the integer and fractional part.
  •  
  •  
  • where r is the radix, n is the number of
    digits of the integer part, and m is the number
    digits of the fractional part.

7
Polynomial Notation
  • A number can be explicitly represented in
    polynomial notation.
  •  
  •  
  • where rp is a weighted position and p is the
    position of a digit.

8
Examples
  • In binary number system
  •  
  • In octal number system
  • In hexadecimal number system

9
Arithmetic
Addition In binary number system,
(101101)2 (11101)2 1111 1
  101101
  11101
  1001010
10
Addition
In octal number system,
(6254)8(5173)8 1 1
  6254
  5173
  13447
In hexadecimal number system,
(9F1B)16 (4A36)16 1 1
  9F1B
  4A36
  D951
11
Subtraction
In binary number system,
(101101)2 -(11011)2 10 10
 - 101101
 - 11011
  10010
12
Subtraction
In octal number system,
(6254)8 -(5173)8 8
 - 6254
 - 5173
  1061
In hexadecimal number system,
(9F1B)16 -(4A36)16 16
 - 9F1B
 - 4A36
  54E5
13
Multiplication
In binary number system,
(1101)2 ? (1001)2
? 1101
? 1001
1101
0000
  0000
  1101
  1110101
14
Division
In binary number system,
(1110111)2 ?(1001)2 1101
1001 1110111
1001
  1011
1001
    1011
  1001
  10
15
Base Conversions
  • Convert (100111010)2 to base 8

16
Base Conversion
  • Convert (100111010)2 to base 10

17
Base Conversion
  • Convert (100111010)2 to base 16

18
Base Conversion from base 8
  • Convert (372)8 to base 2
  • Convert (372)8 to base 10
  • Convert (372)8 to base 16

19
Base Conversion from base 16
  • Convert (9F2)16 to base 2
  • Convert (9F2)16 to base 8
  • Convert (9F2)16 to base 10

20
Binomial expansion (series substitution)
  • To convert a number in base r to base p.
  • Represent the number in base p in binomial
    series.
  • Change the radix or base of each term to base p.
  • Simplify.

21
Convert Base 10 to Base r
  • Convert (174)10 to base 8
  • Therefore (174)10 (256)8

8 1 7 4 6 LSB
  8 2 1 5  
    8 2 2 MSB
      0 0  
22
Convert Base 10 to Base r
  • Convert (0.275)10 to base 8
  • Therefore (0.275)10 (0.21463?)8

8 ? 0.275 ? 2.200 MSD
8 ? 0.200 ? 1.600  
8 ? 0.600 ? 4.800  
8 ? 0.800 ? 6.400  
8 ? 0.400 ? 3.200 LSD
23
Convert Base 10 to Base r
  • Convert (0.68475)10 to base 2
  • Therefore (0.68475)10 (0.10101?)2

2 ? 0.68475 ? 1. 3695 MSD
2 ? 0.3695 ? 0.7390  
2 ? 0.7390 ? 1.4780  
2 ? 0.4780 ? 0.9560  
2 ? 0.9560 ? 1.9120 LSD
24
Signed Number Representation
  • There are 3 systems to represent signed numbers
    in binary number system
  •  Signed-magnitude
  • 1's complement
  • 2's complement

25
Signed-magnitude system
  • In signed-magnitude systems, the most significant
    bit represents the number's sign, while the
    remaining bits represent its absolute value as an
    unsigned binary magnitude.
  • If the sign bit is a 0, the number is positive.
  • If the sign bit is a 1, the number is negative.

26
Signed-magnitude system
27
1's Complement system
  • A 1's complement system represents the positive
    numbers the same way as in the signed-magnitude
    system. The only difference is negative number
    representations.
  • Let be N any positive integer number and be a
    negative 1's complement integer of N. If the
    number length is n bits, then

28
Example of 1's Complement
  • For example in a 4-bit system, 0101 represents 5
    and
  • 1010 represents ?5

29
1's Complement system
30
2's Complement system
  • A 2's complement system is similar to 1's
    complement system, except that there is only one
    representation for zero.
  • Let be N any positive integer number and
  • be a negative 2's complement integer of
    N. If the number length is n bits, then

31
Example of 2's Complement
  • For example in a 4-bit system, 0101 represents 5
    and
  • 1011 represents ?5

32
2's Complement system
33
Addition and Subtraction in Signed and Magnitude
34
Addition and Subtraction in 1s Complement
35
Addition and Subtraction in2s Complement
36
Overflow Conditions
  • Carry-in ? carry-out
  • 0111 1000
  • 5 0101 -5 1011
  • 3 0011 -4 1100
  • -8 1000 7 10111
  • Carry-in carry-out
  • 0000 1110
  • 5 0101 -2 1110
  • 2 0010 -6 1010
  • 7 0111 -8 11000

37
Addition and Subtraction inHexadecimal System
Addition
Subtraction
38
Codes
  • Decimal codes
  • Gray code
  • Error detection code
  • ASCII code

39
Decimal codes
Decimal Digit BCD Excess-3 2421
8421
0 0000 0011 0000
1 0001 0100 0001
2 0010 0101 0010
3 0011 0110 0011
4 0100 0111 0100
5 0101 1000 1011
6 0110 1001 1100
7 0111 1010 1101
8 1000 1011 1110
9 1001 1100 1111
40
Gray Code
Decimal Equivalent Binary Code Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000
41
Error detection code
Parity Bit (odd) Message
1 0000
0 0001
0 0010
1 0011
0 0100
1 0101
1 0110
0 0111
0 1000
1 1001
1 1010
0 1011
1 1100
0 1101
0 1110
1 1111
42
Error detection code
Parity Bit (even) Message
0 0000
1 0001
1 0010
0 0011
1 0100
0 0101
0 0110
1 0111
1 1000
0 1001
0 1010
1 1011
0 1100
1 1101
1 1110
0 1111
43
ASCII Code
  • ASCII American Standard Code for Information
    Interchange.
  • Used to represent characters and textual
    information
  • Each character is represented with 1 byte
  • upper and lower case letters a..z and A..Z
  • decimal digits -- 0,1,,9
  • punctuation characters -- , .
  • special characters -- _at_ /
  • control characters -- carriage return (CR) , line
    feed (LF), beep

44
Assignment 1
  • Page 74
  • 1.1 Only AB and A?B (a), (c), (f), and (g)
  • 1.2 Only AB and A?B (a), (c)
  • 1.3 Only AB and A?B (a), (c)
  • 1.4 (a), (c), (e)
  • 1.5 (a), (c), (e)
  • 1.6 (a), (e)
  • 1.7 (a), (b)
  • 1.8 (a), (b)
  • 1.10 (a), (c)
  • 1.11 (a), (c)
  • 1.12 (a), (c)
  • 1.13 (a), (b)
Write a Comment
User Comments (0)
About PowerShow.com