Number System: Representation and code - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Number System: Representation and code

Description:

Binary= Hexadecimal: Grouped 4-bit from radix point. Hexadecimal= Binary: ... binary number systems, the base, or radix, is 2; thus the rightmost bit ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 32
Provided by: csl77
Category:

less

Transcript and Presenter's Notes

Title: Number System: Representation and code


1
Number System Representation and code
2
Data Representation Unit and Processing Unit
  • In order to make a computer work, it is necessary
    to convert the information we use in daily life
    into a format that can be understood by the
    computer.
  • Binary (base 2)
  • Binary digit Bits 0, 1Bytes 00000000
    11111111Words 0000000000000000
    1111111111111111
  • Octal (base 8)
  • Octal digital 0,1,2,3,4,5,6,7
  • Hexadecimal (base 16)
  • Hexadecimal digit 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
  • base N

3
base N Example
Weight summation method
4
Decimal to Binary Conversion
  • Weight summation method
  • Repeating Division method
  • Repeating Multiplication method

5
Repeating Division Method
4310
43 2 21 remainder 1
21
21 2 10 remainder 1
10 2 5 remainder 0
1010112
5 2 2 remainder 1
2 2 2 remainder 0
1 2 0 remainder 1
6
Repeating Multiplication method
0.312510
0.3125 x 2 0.625 carry 0
0.625
0.01012
0.625 x 2 1.25 carry ?
0.25
1
0.25 x 2 0.5 carry 0
0.5 x 2 1.0 carry 1
7
Conversion Between Bases
  • Base 2 Base 2
  • Base 3 Base 3
  • Base 4 Decimal Base 4
  • Base R Base R
  • There are shortcuts for Base 2,8,16

Generally, conversion between bases can be done
using decimal numbers
8
Conversion Binary-Octal/Hexadecimal
  • BinarygtOctal Grouped 3-bit from radix point
  • OctalgtBinary Invert
  • BinarygtHexadecimal Grouped 4-bit from radix
    point
  • HexadecimalgtBinary

9
Binary Arithmetic Operation
  • Addition
  • Subtraction
  • Multiplication

10
Binary Arithmetic Operation
  • ADDITION
  • Similar to decimal
  • Example
  • 110112 64710
  • 100112 53710
  • ----------------------
    ----------------------
  • 1011102 118410
  • ----------------------
    ----------------------

11
Binary Arithmetic Operation
  • SUBTRACTION
  • Example
  • 110112 64710
  • 100112 - 53710 -
  • ----------------------
    ----------------------
  • 001102 9010
  • ----------------------
    ----------------------

12
Binary Arithmetic Operation
  • MULTIPLICATION
  • Example
  • 110112 64710
  • 100112 x 53710 x
  • -------------------------------------------
    --------------------------------------------
    11011 4529
  • 110110 19410
  • 0000000 323500
  • 00000000
  • 110110000 -----------------------------
    ---------------
  • -------------------------------------------
    34743910
  • 10000000012

13
Signed Number Representations
  • In mathematics, negative numbers in any base are
    represented in the usual way, by prefixing them
    with a "-" sign.
  • However, on a computer, there are various ways of
    representing a number's sign.
  • Four methods of extending the binary numeral
    system to represent signed numbers
  • sign-and-magnitude
  • ones' complement
  • two's complement
  • excess-N

14
Sign-and-magnitude
  • Negative number always written with sign at the
    front
  • Example
  • -2010
  • -10010
  • In computer memory, sign is represent by number
  • 0 for
  • 1 for -

Magnitude
Sign
15
Sign-and-magnitude
  • Some early binary computers (e.g. IBM 7090) used
    this representation.

Value 0 0 0000000 (0)10 1 0000000 - (0)10
16
Ones' complement
  • The ones' complement form of a negative binary
    number is the bitwise NOT applied to it the
    complement of its positive counterpart.
  • Like sign-and-magnitude representation, ones'
    complement has two representations of 0 00000000
    (0) and
  • 11111111 (-0).

17
Ones' complement
  • This numeric representation system was common in
    older computers the PDP-1 and UNIVAC 1100/2200
    series, among many others, used ones'-complement
    arithmetic.

18
First Complement
  • Number x,
  • n-bit can represent first complement
  • -x 2n - x - 1
  • Example
  • -(1)10 (28 - 1 - 1)10
  • 25410
  • 111111101s

19
Ones' complement
  • ISSUE
  • Addition of -1 to 2

20
Two's complement
  • The problems of multiple representations of 0 and
    the need for the end-around carry are
    circumvented by a system called two's complement.
  • In two's complement, negative numbers are
    represented by the bit pattern which is one
    greater (in an unsigned sense) than the ones'
    complement of the positive value.
  • In two's-complement, there is only one zero
    (00000000).
  • Negating a number (whether negative or positive)
    is done by inverting all the bits and then adding
    1 to that result.
  • 11111101s
  • 11111112s

11111112s 00000102s ------------------ 10000
0012s
Value for -1
Ones' complement
Twos complement
Addition of -1 to 2
Ignore
21
Second Complement
  • Number x,
  • n-bit can represent second complement
  • -x 2n - x
  • Example
  • -(1)10 (28 - 1)10
  • 25510
  • 111111112s

22
Excess-N
  • Excess-N, also called biased representation, uses
    a pre-specified number N as a biasing value.
  • A value is represented by the unsigned number
    which is N greater than the intended value.
  • Thus 0 is represented by N, and -N is represented
    by the all-zeros bit pattern.

23
Base -2
  • In conventional binary number systems, the base,
    or radix, is 2 thus the rightmost bit represents
    20, the next bit represents 21, the next bit 22,
    and so on.
  • However, a binary number system with base -2 is
    also possible.
  • The rightmost bit represents (-2)0 1, the next
    bit represents (-2)1 -2, the next bit (-2)2
    4 and so on, with alternating sign.

24
Comparison table
25
N Complement
-x 2n - x Bn - X B Base n no. of bit X
value
  • -x 2n - x - 1
  • (Bn - 1) - X
  • B Base
  • n no. of bit
  • X value
  • one complement for (0101)2
  • (24-1)-01011s
  • 1111 - 01011s 10101s
  • ninth complement for (22)10
  • (102-1)-229s
  • 99 - 229s779s

two complement for (0101)2 (24-0101)2s (10000 -
00101)2s 10112s tenth complement for (22)10
(102-22)10s (100 22)10s7810s
26
Subtraction using B Complement
  • Given two n-digit base-B unsigned numbers,
  • I J, Subtraction for (I-J) is as
  • Add I to B-complement for J
  • ? (5 N - 3 )10
  • (2 N)10 N 2n 28
  • (2 256)10
  • (100000010)2s ? (00000010)2s
  • ? (5 - 3 10n)10s N 10n 101
  • (2 10)10s
  • (12)10s ? (12 - 101)10
  • ? (2)10

510 (-3)10
-x 2n - x (two complement)
E.g. 510 - 310
I (Bn - J) (I - J) Bn
n 1 bit
If I?J, there is one final carry Bn, ignore
final carry to obtain answer as I-J
27
Subtraction using B Complement
  • If I?J, no final carry Bn,
  • (I - J) Bn
  • (10 N - 22 )10
  • (-12 N)10 N 2n 28
  • (-12 256)10
  • (11110100)2s
  • (10 - 22 10n)10s N 10n 102
  • (-12 100)10s
  • (88)10s? (88 -102)10
  • ? - (12)10

E.g. 1010 - 2210
I (Bn - J) (I - J) Bn
n 2 bits
28
Exercise
  • Identify the following result using i) Two and
    ii) Tenth Complement
  • 33 10 - 2210
  • 01102 - 00102
  • 00112 01112
  • (33 N - 22)10 ? (11 256)10 ? 1000010112s?
    000010112s
  • (33 N - 22)10 ? (11 102)10s ? (111)10s ?
    (11)10
  • ? (111-102)10 ? (11)10
  • (0110 N - 0010)2 ? (0100 28)2s ? (100000100)2s
    ? (00000100) 2s
  • (0100 24)2s ?
    (10100) 2s ? (0100) 2s
  • (0110 N - 0010)10 ? (0100101)10s? (410)10s ?
    (14)10s ? (4)10
  • ?
    (14-101)10 ? (4)10
  • (0011 N - 0111)2 ? (-0100 28)2s ? (11111100)
    2s

29
Subtraction using B-1 Complement
  • Add I to B-1 complement for J
  • I (Bn - 1 - J) (I - J - 1) Bn
  • If I?J, there is one final carry Bn,
  • ignore final carry to obtain answer as I-J
  • If I?J, no final carry Bn

30
Subtraction using B-1 Complement
-x 2n - x - 1
  • I (Bn - 1 - J) (I - J -1) Bn
  • (5 N - 3 - 1)10
  • (1 N)10 N 2n 28
  • (1 256)10
  • (100000001)1s
  • ? (00000001 1)2
  • ? (00000010)2
  • (5 10n - 3 - 1)10 N 10n 101
  • (1 10)9s
  • (11)9s
  • ? (1 1)10
  • ? (2)10

E.g. 510 - 310
n 1 bit
  • If I?J, there is one final carry Bn,
  • ignore and add the final carry to obtain answer
    as I-J

31
Subtraction using B-1 Complement
  • If I?J, no final carry Bn,
  • (I - J - 1) Bn
  • E.g. 1010 - 2210 (10 N - 22 - 1)10
  • (-13 N)10 N 2n 28
  • (-13 256)10
  • (243)10
  • ? (11110011)1s
  • 1210 (00001100)2
  • -1210 (11110011)1s
  • (10 - 22 - 1 10n)9s N 10n 102
  • (-13 100)9s
  • (87)9s
  • ? (871)10s
  • ? 88 - 10210
  • ? - (12)10

-x 2n - x 1
-x 10n -1 - x (ninth complement)
n 2 bits
-22 (102 -1- 22)9s (87)9s
Write a Comment
User Comments (0)
About PowerShow.com