Title: Number Systems: Positive Integers
1Department of Computer and Information
Science,School of Science, IUPUI
CSCI 230
Information Representation Positive Integers
Dale Roberts, Lecturer IUPUI droberts_at_cs.iupui.edu
2Information Representation
- Computer use a binary systems
- Why binary?
- Electronic bi-stable environment
- on/off, high/low voltage
- Bit each bit can be either 0 or 1
- Reliability
- With only 2 values, can be widely separated,
therefore clearly differentiated - drift causes less error
- Example
Digital v.s, Analog
1 0 0 1 0 1 0 1
1 0 0 0 0 0 0 1
3- Binary Representation in Computer System
- All information of diverse type is represented
within computers in the form of bit patterns. - e.g., text, numerical data, sound, and images
- One important aspect of computer design is to
decide how information is converted ultimately to
a bit pattern - Writing software also frequently requires
understanding how information is represented
along with accuracies
4Number Systems
- Decimal Number System
- Base is 10 or D or Dec
- Ten symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each place is weighted by the power of 10
- Example
- 1234.2110 or 1234.21D
- 1 x 103 2 x 102 3 x 101 4 x 100 2 x 10
-1 1 x 10 -2 - 1000 200 30 4 0.2 0.01
1,000
100
1
10
10
1
5Binary Number System
- Binary Number System
- Base is 2 or b or B or Bin
- Two symbols 0 and 1
- Each place is weighted by the power of 2
- Example
- 10112 or 1011 B
- 1 x 23 0 x 22 1 x 21 1 x 20
- 8 0 2 1
- 1110
- 11 in decimal number system is 1011 in binary
number system
6Conversion between Decimal and Binary
- Conversion from decimal number system to binary
system - Question represent 3410 in the binary number
system - Answer using the divide-by-2 technique
repeatedly - If we write the remainder from right to left
- 3410 ? 1 x 25 0 x 24 0 x 23 0 x 22 1x 21
0 x 20 - ? 1000102
7Practice Exercises
- 13D (?) B
- 23D (?) B
- 72D (?) B
Blocks 512 256 128 64 32 16 8 4 2 1
32 16 8 4 2 1
2
8
8
1
1101B
4
1
4
16
2
8
4
1
16
2
8
32
4
1
64
16
8Conversion between Binary and Decimal
- Conversion from binary number system to decimal
system - Example check if 1000102 is 3410
- using the weights appropriately
- 1000102 ? 1 x 25 0 x 24 0 x 23 0 x 22 1 x
21 0 x 20 - ? 32 0 0 0 2
0 - ? 3410
9Practice Exercises
- Ex 0101B? ( ? ) D
- Ex 1100B ? ( ? ) D
- Ex 0101 1100B ? ( ? ) D
Bit 4 23 8 Bit 3 22 4 Bit 2 21 2 Bit 1 20 1
0 1 0 1
4
1
5D
0 1 0 1 1 1 0 0 128
64 32 16 8 4
2 1 92D
10Binary Arithmetic on Integers
0
1
1
1 0
Carry bit
- Example find binary number of a b
- If a 13D , b 5D
- If a 15D, b 10D
1 1 0 1b
0 1 0 1b
1
0b
0
0
1
11Binary Arithmetic on Integers
0
0
0
1
Example if a 100001b , b 101b , find a x b
? 33D
? 5D
1 0 0 0 0 1
0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
? 165D
1 0 1 0 0 1 0 1b
12Hexadecimal Number System
- Hexadecimal Number System
- Base 16 or H or Hex
- 16 symbols
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11),
C(12), D(13), E(14), F(15) - Hexadecimal to Decimal
- (an-1an-2a1a0)16 (an-1 x 16n-1 an-2 x 16n-2
a1 x 161 a0 x 160 )D - Example (1C7)16 (1 x 162 12 x 161 7 x 160
)10 (256 192 7)10 (455)10 - Decimal to Hexadecimal Repeated division by 16
- Similar in principle to generating binary codes
- Example (829)10 (? )16
- Stop, since quotient 0
-
Divide-by-16 Quotient Remainder Hexadecimal digit
829 / 16 51 / 16 3 / 16 51 3 0 13 3 3 Lower digit D Second digit 3 Third digit 3
13Hexadecimal Conversions
- Hexadecimal to Binary
- Expand each hexadecimal digit to 4 binary bits.
- Example (E29)16 (1110 0010 1001)2
- Binary to Hexadecimal
- Combine every 4 bits into one hexadecimal digit
- Example (0101 1111 1010 0110)2
(5FA6)16
14Octal Number System
- Octal Number System
- Base 8 or o or Oct
- 8 symbols 0, 1, 2, 3, 4, 5, 6, 7
- Octal to Decimal
- (an-1an-2a1a0)8 (an-1 x 8n-1 an-2 x 8n-2
a1 x 81 a0 x 80 )10 - Example (127)8 (1 x 82 2 x 81 7 x 80 )10
(64 16 7)10 (87)10 - Decimal to Octal
- Repeated division by 8 (similar in principle to
generating binary codes) - Example (213)10 (? )8
- Stop, since quotient
0 - Hence, (213)10
(325)8
Divide-by -8 Quotient Remainder Octal digit
213 / 8 26 / 8 3 / 8 26 3 0 5 2 3 Lower digit 5 Second digit 2 Third digit 3
15Octal Conversions
- Octal to Binary
- Expand each octal digit to 3 binary bits.
- Example (725)8 (111 010 101)2
- Binary to Octal
- Combine every 3 bits into one octal digit
- Example (110 010 011)2 (623)8
16Practice Exercises
- 1)Â Convert the following binary numbers to
decimal numbers - (a)Â Â Â Â 0011 B
- (b)Â Â Â Â 0101 B
- (c)Â Â Â Â 0001 0110 B
- (d)Â Â Â Â 0101 0011 B
- 2)Â Convert the following decimal numbers to
binary - (a)Â Â Â Â 21 D
- (b)Â Â Â Â 731 D
- (c)Â Â Â Â 1,023 D
17Practice Exercises
- 3)Â Â Â Convert the following binary numbers to
hexadecimal numbers - (a)Â Â Â Â 0011 B
- (b)Â Â Â Â 0101 B
- (c)Â Â Â Â 0001 0110 B
- (d)Â Â Â Â 0101 0011 B
- (a)Â Â Â Â 21 D
- (b)Â Â Â Â 731 D
- (c)Â Â Â Â 1,023 D
- 4.) Perform the following binary additions and
subtractions. Show your work without using
decimal numbers during conversion. - (a)Â Â Â Â 111 B 101 B
- (b)Â Â Â Â 1001 B 11 B
18Acknowledgements
- These slides where originally prepared by Dr.
Jeffrey Huang, updated by Dale Roberts.