Robustness in CAD geometric construction - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Robustness in CAD geometric construction

Description:

define A = on D and at 8 cm of B. define D ' = passing through B ... predicative symbols. functional symbols. point, line, circle, length. is-onl : point line ... – PowerPoint PPT presentation

Number of Views:70
Avg rating:3.0/5.0
Slides: 20
Provided by: Schr5
Category:

less

Transcript and Presenter's Notes

Title: Robustness in CAD geometric construction


1
Robustness in CAD geometric construction
  • Pascal Schreck
  • LSIIT - Strasbourg
  • French CNRS UPRES-A 7005
  • Strasbourg University
  • (France)

2
Geometric construction in CADExample
Declarative specification of the figure
Sketch
Construction program fix point B fix straight
line D define A on D and at 8 cm of B define
D  passing through B doing an angle
100 with D define C on D  at 14 cm of
B define D2 ? bisectors of D and D  define D3 ?
bisectors of D and (AC) define O intersection
of D2 and D3 define H orth projection of O onto
D define G circle with centre O passing
through H ...
Dimensions
Graphical figure (e solution)
gt figure(s) which respects the dimensions
or a way to construct it
3
Plan
1. Example 2. Prior approaches 3. Correctness,
completeness, robustness 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
4
Prior approaches (1)
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
  • Numerical iterative approaches
  • Newton-Raphson (Nelson, Light et al.)
  • Continuation method (Lamure Michelucci)
  • Relaxation (Sutherland, Borning)
  • Optimisation (Ge et al.)

5
Prior approaches (2)
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
  • Combinatorial approaches
  • Sunde (88) Verroust et al. (CD and CA-sets)
  • Owen (92) (graph decomposition)
  • Hoffman et al. (93) (graph agregation)
  • Ait et al. (93) (perfect matching)

One solution
6
Prior approaches (3)
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
  • Symbolic approaches
  • Algebraic
  • Ritt principle (Chou, Wu)
  • Hörner Basis (Hendricson)
  • Lebesgue method (Chen)
  • Geometric
  • without decomposition (Aldefeld,
    Brüderlin)
  • with decomposition (Mathis and Schreck)

7
Correctness, completeness(1)
  • Correctness only solutions
  • Completeness all the solutions
  • Robustness all the solutions in all the cases

8
Correctness, completeness(2)
Given two parallel lines D1 and D2, a point A on
D1, a point B on D2 and a point M, construct a
line d passing through M and cuting D1 at X and
D2 at Y such as AX BY k
-- Existence of different cases
9
Correctness, completeness(3)
Introduce Z / AZ k AXBY (XZBY, XZYB
parallelogram)
M
If XZYB parallelogram then define O
midpoint of BZ define d (MO) -- (if M ?
O) Verify If XZBY parallelogram then
define dir direction of BZ define d
passing through M with direction dir Verify
A
Z
X
O
define O midpoint of BZ define d (MO)
B
Y
10
Geometric universe
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
(1) Heterogeneous signature
  • Sorts
  • predicative symbols
  • functional symbols

point, line, circle, length
is-onl point line is-onc point circle
length length point point
dist point point -gt length intercc circle
circle -gt point sline point point -gt line ccr
point length -gt circle
11
Geometric universe
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
(2) Problems
  • multi-functions

intersection(s) of 2 circles bisectors...
intercc circle circle -gt point bis line
line -gt line
construction of the midpoint of (A,B) ?
intercc1circle circle -gt pointintercc2circle
circle -gt point
mid(A,B)interll( sline(A,B),
sline(intercc1(ccp(A,B)),
intercc2(ccp(B,A))) )
12
Geometric universe
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
(3) More problems
  • pseudo-function

mid(A,B)interll( sline(A,B),
sline(intercc1(ccp(A,B)),
intercc2(ccp(B,A))) )
intersection of 2 circlesline passing trough 2
points...
? preconditional axiom
? A point, B point, L line (A ? B)? A is-on
L ? B is-on L ? L sline(A, B)
13
Construction program(1) Basic considerations
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
Given a construction statement
  • Constructiblity of x Is there (at least) one
    solution ?
  • Construction of x What are the solutions ?

14
Construction program(2) Refinements
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
All the solutions ?
In all the cases ?
15
Construction program(3) From logic to program
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
? and ?
if then else
? for multi-function
list and iteration
? for multi-scenario
case of
16
Construction program(4) Small example
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
Intersection of two circles
Note ?(c1, c2) ? 0 lt r1-r2 ? dist(O1,O2) ?
r1r2
17
Implementation (1)
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
  • partially implemented 2 prototypes

CAE Progé knowledge based system Written in
Prolog correctness, completeness
CAD Yams multi-agent system Written in
C resolution, efficiency
Not yet implemented
18
Implementation (2)
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
  • taking preconditions into account
  • using the guard associated with the basic
    constructors (atributed signature)
  • examining the cases where preconditions are
    satisfied and the cases where they are not
  • a geometric prover able to make hypothesis

19
Conclusion
1. Example 2. Prior approaches 3. Correctness,
completeness ... 4. Geometric universe 5.
Construction program 6. Implementation 7.
Conclusion
  • a logical correct framework
  • correctness, completeness and robustness of
    constructions
  • partially implemented into two geometric
    symbolic solvers
  • such a study should be useful within other
    methods
Write a Comment
User Comments (0)
About PowerShow.com