SEABORN PPT - PowerPoint PPT Presentation

About This Presentation
Title:

SEABORN PPT

Description:

Seaborn is a Python data visualization library based on matplotlib. Some basics of seaborn are highlighted in this tutorial along with some characteristics. Moreover, various plots that can be plotted to observe the distribution patterns using seaborn are also named. Distplot function is discussed in detail. To learn more about trending data science courses, artificial intelligence or machine learning courses visit: – PowerPoint PPT presentation

Number of Views:1105

less

Transcript and Presenter's Notes

Title: SEABORN PPT


1
Seaborn
2
Introduction
  • Seaborn is a Python statistical graphics library. 
  • It builds on top of matplotlib and incorporates da
    ta structures closely with pandas. 
  • Seaborn allows you to explore and understand your 
    data. 
  • Its plotting functions work on data frames and arr
    ays containing entire datasets and internally per
    form the necessary semantic mapping and statistic
    al aggregationfor the development of informative p
    lots. 
  • It makes the charts more appealing and promotes s
    ome of the common needs for data visualisation (li
    ke mapping a color to a variable).
  • Importing seaborn import seaborn as sns
  • To check the version of seaborn on your system
  • print(sns.__version__)

3
(No Transcript)
4
Various Plots in Seaborn
  • Wide range of plots can be plotted using seaborn
    for visualization.
  • Here are some of them
  • Univariate Data Plotting a graph for single
    variable
  • Distplot
  • Rug Plot
  • 2. Bivariate Data Plotting a graph for 2
    variables
  • Scatter Plot
  • Hexbin Plot
  • Kde Plot
  • Co-relation

5
(No Transcript)
6
(No Transcript)
7
Distplot
  • Distplot stands for distribution plot, it takes
    as input an array and plots a curve corresponding
    to the distribution of points in the array.
  • We will be using distplot() function for this
    purpose.
  • The output plot will have basically 2
    graphs 1.Histogram 2.kde curve-kernel
    density
  • Eg import matplotlib.pyplot as pltimport seabo
    rn as snssns.distplot(0, 1, 2, 3, 4, 5)plt.sho
    w()

8
  • O/P

Histogram
Kde curve
9
  • We can also separately visualize both the plots.
  • sns.distplot(0, 1, 2, 3, 4, 5,kdeFalse)only
    histogram curve will be observed.
  • sns.distplot(0, 1, 2, 3, 4, 5,histFalse) only
    kde curve will be observed.

10
THANKS FOR WATCHING!
  • Follow us on our Social Media Platforms
  • Instagram
  • Facebook
  • LinkedIn
  • Twitter
  • Or, Contact us contacts_at_learnbay.co
Write a Comment
User Comments (0)
About PowerShow.com