A 12b 75MSs Pipelined ADC using OpenLoop Residue Amplification - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

A 12b 75MSs Pipelined ADC using OpenLoop Residue Amplification

Description:

Real time post-processor off-chip (FPGA) Die Micrograph (7.9mm2) ... Processor. Properties ... Post-Processor. Stage1 Implementation. Layout ... – PowerPoint PPT presentation

Number of Views:171
Avg rating:3.0/5.0
Slides: 30
Provided by: borism
Category:

less

Transcript and Presenter's Notes

Title: A 12b 75MSs Pipelined ADC using OpenLoop Residue Amplification


1
A 12b 75MS/s Pipelined ADC using Open-Loop
Residue Amplification
  • Boris Murmann
  • Bernhard E. Boser
  • University of California, Berkeley

2
Outline
  • Highlights
  • Objective Approach
  • Key Results
  • Implementation Details
  • Open-Loop Residue Amplification
  • Errors Correction Mechanism

3
Conventional Pipeline Stage
  • Need high speed, low noise, high gain OTA
  • Dominates stage power dissipation
  • Hard to implement in deep sub-µm technology
  • High gain ? power inefficient topologies

4
Design Objective
  • Power efficient, improved sub-µm compatibility
  • Need to restore benefits of electronic feedback
  • Linearization Digital arithmetic
  • Desensitization Digital background
    calibration Biasing layout techniques

5
Evaluation Prototype
  • Re-used ADC in 0.35µm Kelly, ISSCC 2001
  • Modified only 3beff stage1 ? open-loop
  • Conventional 9beff backend, 2 redundant bits
  • Real time post-processor off-chip (FPGA)

6
Die Micrograph (7.9mm2)
LOGIC
CLK
REFERENCE AND B IAS
PIPELINE BACKEND
STAGE1
SHA
7
Stage1 Amplifier Power
  • ? Same noise and settling time

8
Measured INL
9
Measured INL
10
INL Zoom (Post-Proc. ON)
11
FFT Plot (fs75MHz, fin40MHz)
Post-Proc. Off SNR48dB THD-50dB SFDR58dB
Post-Proc. On SNR67dB THD-74dB SFDR76dB
12
Performance Summary
13
Stage1 Residue Amplification
  • Design parameter VOVVGS-VTH

14
Choice of VOV
  • First order analysis using Taylor expansion

Mismatch
Gain Compression
Linear
  • Large VOV ? Small nonlinearity errors
  • Tradeoff Relative increase in ISS to maintain
    required Gm ? ISS/VOV
  • Goal Choose VOV reasonably large to yield
    compact, low order amplifier model

15
Errors as Function of VOV
Error
VOV V
  • Error budget ½ LSB of 9b backend ? 0.1
  • VOV gt 250mV ? 5th and higher order negligible
  • Achieved ??/? lt 0.3 ? 2nd order negligible
  • 3rd order practically unavoidable

16
Stage1 Model with Errors
17
Nonlinear Error Correction
  • Invert amplifier polynomial
  • Express error as function of VRES1
  • Push error into digital domain through backend

18
Nonlinear Error Correction
  • Pre-computed 2-D look-up table, compressible
  • ? 64kBit ROM covers processtemp. variations
  • Problem How to determine optimum p2?

19
Redundant Residue Mode
  • Both residues can be used for conversions
  • Requires extra DAC states and comparators

20
Residue Segment Zoom
  • Gain compressive segments
  • Optimum p2 digitally maps onto straight lines
  • Idea Measure h1 and h2, adjust p2 until h2h1

21
Distance Estimation
  • RNG decides top/bottom, independent of VIN1
  • Count codes ? q in bottom channel ? Reference
    count n

22
Distance Estimation
  • Counter array in top channel
  • Find closest match to n ? H1
  • H1 is unbiased estimate of true distance h1

23
Complete Post-Processor
24
Properties
  • Background calibration, parameters track without
    interrupting ADC operation
  • Relies on busy ADC input gt1/16 FS. Invalid
    estimates detectable ? discard
  • Tradeoff Tracking speed vs. accuracy
  • This work ?LMS?100...200ms, sufficient to track
    e.g. Tambient
  • Address faster variations on circuit level

25
Post-Processor Hardware
  • 8400 Gates, 64 bytes RAM, 64kBit ROM
  • Implementation in 0.35µm technology

Area1.4mm2 (18)
Power10.5mW (3.6)
Post-Processor
26
Stage1 Implementation
27
Layout Circuit Techniques
28
Parameter Tracking
  • GmR replica bias desensitizes, loosens tracking
    requirements in LMS loops

29
Summary
  • First published calibration technique to address
    residue amplifier nonlinearity
  • Enables open-loop residue amplification
  • Power efficient
  • Improved deep sub-µm compatibility
  • Judicious combination of digital and analog
    techniques ? feasible, low overhead solution
  • Future potential, deep-sub-µm Pdigital?
    Panalog? ? increasing power savings
Write a Comment
User Comments (0)
About PowerShow.com