Title: Renormalization-group%20investigation%20of%20the%202D%20Hubbard%20model
1Partnergroup
Renormalization-group investigationof the 2D
Hubbard model
A. A. Katanina,b
a Institute of Metal Physics, Ekaterinburg,
Russia b Max-Planck Institut für
Festkörperforschung, Stuttgart Many thanks for
collaboration to A. P. Kampf (Institut für
Physik, Universität Augsburg) W. Metzner
(Max-Planck Institut für Festkörperforschung,
Stuttgart)
2008
2Content
- The model
- The field theoretical and functional RG
approaches - Phase diagrams
- Fulfillment of Ward Identities
- The two-loop corrections
- Conclusions and future perspectives
3The 2D Hubbard model
t
t'
U
- Provides a prototype model of interacting
fermionic systems leading to nontrivial physics
- The weak-coupling regime U lt W/2
- Why it is interesting
- Non-trivial
- Gives a possibility of rigorous numerical and
semi- analytical RG treatment.
4The case of general Fermi surface
k1,s
k3,s
kF
k1 k2k3 k4
k4,s'
k2 ,s'
There is no interference between different
channels (channel separation)
k1 - k2 k3 - k4 BCS channel k1 k3 k2 k4
ZS channel k1 k4 k2 k3 ZS' channel
k
The Fermi liquid
kq
k
q-k
- Possible types of instabilities
- Superconducting (only for Ult0)
- Ferro- and antiferromagnetic instabilities are
not in the weak-coupling regime
5The parameter space
- Questions to answer
- What are the possible instabilities for t-t'
dispersion? - How do they depend on the form of the Fermi
surface, model parameters e.t.c. ?
The line of van Hove singularities
???
t'/t
???
???
n
Nesting
6Theoretical approaches
- Parquet approach (V.V. Sudakov, 1957 I.E.
Dzyaloshinskii, 1966 I.E. Dzyaloshinskii and
V.M. Yakovenko, 1988)
- Field-theory renormalization group approach (P.
Lederer et al., 1987 T.M. Rice, N. Furukawa, and
M. Salmhofer, 1999 A.A. Katanin, V.Yu. Irkhin
and M.I. Katsnelson, 2001 B. Binz, D. Baeriswyl,
and B. Doucot, 2001)
- Functional renormalization group approach
- Polchinskii equations (D. Zanchi and H.J.
Schulz, 1996 2000) - Wick-ordered equations (M. Salmhofer, 1998
C.J. Halboth and W. Metzner, 2000 D. Rohe and
W. Metzner, 2005) - Equations for 1PI functional (M. Salmhofer, T.M.
Rice, N. Furukawa, and C. Honerkamp, 2001) - Equations for 1PI functional with temperature
cutoff (M. Salmhofer and C. Honerkamp, 2001 A.
Katanin and A. P. Kampf, 2003, 2004) - Continuous unitary transformations (C.P.
Heidbrink and G. Uhrig, 2001 I. Grote, E.
Körding and F. Wegner, 2001)
7The field-theory (two-patch) approach
B
2?
A
Similar to the left and right moving
particles in 1D
But the geometry of the Fermi surface and the
dispersion are different !
8The two patch equations at T ??
9The vertices scale dependence
U2t, t'/t0.1 (nVH0.92)
g3 (umklapp)
g2 (inter-patch direct)
g1
(????)
?
g4
U2t, t'/t0.45 (nVH0.47)
g1(inter-patch exchange)
g4 (intra-patch)
g2
(????)
g3
?
10Phase diagram vH band fillings
T0, ?0
32 - patch fRG approach
11Functional renormalization group
- Projecting momenta to the Fermi surface
- Projecting frequencies to zero
- 32-48 patches on the Fermi surface
(after M. Salmhofer and C. Honerkamp, 2001)
121PI functional RG
- Considers the evolution of the 1PI generating
functional
(T. Morris, 1994 M. Salmhofer and C. Honerkamp,
2001)
- Obtains the equations for the coefficients of
the expansion
where
- Truncates the hierarchy of equations, e.g.
131PI scheme
14Phase diagram vH band fillings
T0, ?0
32 - patch fRG approach
15Ward identities
Ward identity
is fulfilled up to the order V2 only
Replacement
in the equation for the vertex
(A. Katanin, Phys. Rev. B 70, 115109 (2005))
improves fulfillment of Ward identities
- Applications
- Zero-dimensional impurity problems (C.
Schönhammer, V. Meden, and T. Pruschke,
2005, 2008) - Flow into symmetry-broken phases (W. Metzner,
M. Salmhofer, C. Honerkamp, and R. Gersch,
2005-2008)
(23) and the mean-field-type result for the
self-energy,
16Half filling, non-nested Fermi surface
MF
n1
d-wave superconducting
antiferromagnetic
48-patch fRG approach
QMC H.Q. Lin and J.E. Hirsch, Phys. Rev. B 35,
3359 (1987).
PIRG T. Kashima and M. Imada Journ. Phys. Soc.
Jpn 70, 3052 (2001).
MF W. Hofstetter and D. Vollhardt, Ann. Phys. 7,
48 (1998)
17Angular dependence of the order parameter
Hole-doped sc, A. A. Katanin and A. P. Kampf,
Phys. Rev. 2005
Electron-doped sc, A. A. Katanin, Phys. Rev. 2006
Max
Hot spot
J. Mesot et al., Phys. Rev. Lett. 83, 840 (1999).
Pr0.89LaCe0.11CuO4
H. Matsui et al., Phys. Rev.Lett. 95, 017003
(2005).
18Taking 6-point vertex into account
U?? 2.5t
????? 0.1t
??? 0.1t
A. Katanin, arXiv2008
19Scattering rates
??? 0.1t
NFL
Landau
Landau
FL
FL
NFL
??? 0.1t
????? 0.1t
From spin-fermion theory
(R. Haslinger, Ar. Abanov, andA. Chubukov, 2001)
20Summary of the results of fRG approach
- fRG allows for treating competing instabilities
in fermionic systems and obtain information about - susceptibilities
- phase diagrams
- symmetries of the order parameter
- quasiparticle characteristics
- The ferro-, antiferromagnetic, and
superconducting instabilities occur in different
regions of phase diagram the order parameter
symmetry deviates from the standard s- and d-wave
forms - The quasiparticle residues remain finite in the
paramagnetic state the quasiparticle damping
shows a T2 dependence at low T and T1-a
dependence at higher T, a 0 - The truncation at 4-point vertex yields results
compatible with more complicated truncations the
divergence of vertices and susceptibilities is
however suppressed including the 6-point vertex
21Future perspectives
- Detail description of quantum critical points
- Application to the localized Heisenberg (e.g.
frustrated) magnets bosonic (magnons) vs.
fermionic (spinons) excitations - Combination with other nonperturbative approaches
- Including long-range interactions, gauge fields
etc.
similarity to CSB in QCD ?
T
QC
vs.
RC
QD
m
QPT
O(N) or O(N)/O(N-2) NLs-model
La2CuO4
field-theor. RG 1/N expansion, V. Yu. Irkhin,
A. Katanin et al., PRB 1997
Frustration and quantum criticality
Thank you for the attention!
We are open for collaboration