Title: Probing%20the%20Dark%20Universe%20with%20Weak%20Gravitational%20Lensing
1Probing the Dark Universe with Weak Gravitational
Lensing
- Andy Taylor
- Institute for Astronomy, School of Physics,
- University of Edinburgh, Royal Observatory,
- Edinburgh, U.K.
With David Bacon, Meghan Grey, Michael Brown,
Tom Kitching, Chris Wolf, Klaus Meisenheimer,
Bhuvnesh Jain
2The Standard Model of Cosmology
- WMAP, SNIa, 2dFGRS, Sloan Digital Sky Survey
- 70 Dark Energy
- 25 Dark Matter
- 5 Baryonic Matter
- Spatially flat
- Four outstanding problems
- Dark Matter
- Dark Energy
- Inflation
- Galaxy formation
(VIRGO Consortium)
3Gravitational Lensing
- Hubble Space Telescope deep field of a galaxy
cluster the large gravitational lens, Abell
2218.
4Gravitational Lensing
- A simple scattering experiment
Observer
Galaxy cluster/lens
Background source
5Gravitational Lens Distortions
-
- Galaxy ellipticity, e
- Lensing effect
- e e 2 g
- On average ltegt 0.
- So lte gt2g.
- Shear matrix
g g1 g2
6Weak Lensing
- An observable is the shear (2-d tidal) matrix
- The 2-d lensing scalar potential, f, is
a projected Newtonian potential, F
(Take derivatives on sky.)
7Mapping the Dark Matter
- From shear to projected density (Kaiser
Squires, 1993)
Surface potential
Surface density
S/Sc
(Courtesy A. Refregier)
8Supercluster Abell 901/2 in COMBO-17 Survey
1/2 deg 3Mpc/h
(Gray Taylor, et al., 2002, ApJ, 568,141)
9Mass and light in Supercluster A901/2
Dark Matter contours, k. Elliptical galaxy light
shading.
Error Dk0.02 (1-contour)
(Gray Taylor, et al., 2002, ApJ, 568,141)
10Mapping the Dark Matter in 3-D
- The lens potential, f, is a radial integral over
the 3-D - Newtonian potential, F
Observer
Galaxy clusters/lenses
Background source
11Mapping the Dark Matter in 3-D
- With source distances this can be exactly solved
to - recover the 3-D Newtonian potential (Taylor
2001)
12Is 3-D dark matter mapping practical?
- Shot-noise for 3-D dark matter potential map
-
- So Wiener filter in redshift
-
- Can now resolve clusters.
- 3-D lensing quality data already
exists...COMB0-17 has 17 band photometric
redshifts with Dz0.01.
(Bacon Taylor MN 2003 Taylor, et al MN 2004)
(Bacon Taylor, 2003 Hu Keeton, 2002)
13The 3-D dark matter potential field
- Potential Field
- Galaxy density
z
1.0
0.8
0.6
0.4
Y
X
(2-s threshold)
Taylor, et al, 2004 MN, in press
14The 3-D dark matter potential and galaxy number
density fields
- Potential Field
- Galaxy number density
Taylor, et al, 2004 MN, in press
15A901/2 CB1 Cluster parameters
- Cluster Redshift M (lt0.5Mpc) L(lt0.5Mpc)
M/L - (1013Msun) (1011Lsun)
(Msun/Lsun) - A901a 0.16 10.8-2
24.7 43.7 - A901b 0.16 8.4-2
13.6 62.2 - A902 0.16 5.1-3
19.5 26.2 - CB1 0.48 12.0-6
13.0 92.3
- Estimate projection-free masses of all objects.
- Erratic mass-to-light ratio non-equilibrium
system. - Modelling with analytic and numerical methods.
(Taylor, et al, 2004 MN, in press)
16Cosmic Shear
- Lensing by the large-scale dark matter
distribution. - First detected by 4 groups in 2000.
17Four random fields in COMBO-17 survey
2-D Dark Matter Maps
- Area 1 sq deg.
- Depth z 0.8.
- Scale 10 Mpc/h.
Chandra Deep Field
South Galactic Pole
S11
FDF
18Cosmic Shear Power Spectrum
- Maximum Likelihood Analysis of Cosmic Shear.
- Measured over 4 random COMBO-17 fields.
R(Mpc/h)
50 5
0.5
zm 0.85/-0.05 from photometric redshifts
(signal) (noise) (noise)
Standard LCDM model
Shear Amplitude
Multipoles
Brown, Taylor, et al, 2003, MNRAS, 341, 100
19Results from Cosmic Shear
- Combine with 2dF Galaxy Redshift Survey
pre-WMAP CMB
s8(Wm/0.3)0.490.71/-0.09
Lewis Bridle (2002)
Percival et al (2002)
(h0.72, t0.1)
Brown, Taylor, et al, 2003, MNRAS, 341, 100
203-D Cosmic Shear
- Shear probes the density field at different
redshifts
Shear-shear cross-power
Observer
Redshift
21The Growth of Dark Matter Clustering
- Evolution of the matter power spectrum
1-sigma
Pm(k,z)
c2-fit to data. First detection of evolution
of Dark matter clustering. A fundamental
prediction of Cosmology.
2-sigma
LCDM
Redshift
(Bacon Taylor, et al 2004, MN)
22Geometric test of Dark Energy
- (Bhuvnesh Jain AT, 2003, Phys
Rev Lett, 91,1302) - Depends only on WV, w p/r (and WmWK).
Observer
Galaxy cluster/lens
z1
z2
zL
23Geometric test of Dark Energy
- Estimate parameters by minimising c2 -fit over
all source configurations.
Observer
Galaxy cluster/lens
z1
z2
zL
24Geometric test of Dark Energy
(with Tom Kitching and David Bacon)
- Geometric test applied to A901/2 clusters.
- Dw0.8 from 3 clusters.
- Uncertainty scales as
- 1 for darkCAM on VISTA.
A901/2
WMAP
25Measuring the evolution of Dark Energy
- Measure Wv and w(a)w0wa(1-a).
- Estimate error for SNAP (zm1.5).
- 10 of sky Dw1, Dwa10
wa0
w0
wa
w0
WV
Jain Taylor, PhysRevLett, 2003
26darkCAM on VISTA
- Comparison of lensing telescopes grasp
- (area x fov) and timescales
VISTA (Visible Infrared Survey Telescope for
Astronomy)
darkCAM
- Proposal to PPARC to start in 2009.
- (PI Taylor)
- w to 1 accuracy.
- 3-D dark matter map of sky.
27Summary
- With 3-D lensing (shear redshifts) we can now
measure the 3-D Dark Matter distribution. - Detect the growth of Dark Matter clustering.
- And measure the equation of state of dark energy.
- Can measure dark energy properties in
- near future with darkCAM on VISTA.