Title: Barry C. Sanders
1Efficiently algorithm for universal quantum
simulation
- Barry C. Sanders
- Institute for Quantum Information Science,
University of Calgary - with G Ahokas (Calgary), D W Berry (Macquarie), R
Cleve (Waterloo), - P Hoyer (Calgary), N Wiebe (Calgary)
Quantum Information and Many Body Physics
Workshop University of British Columbia, 1
December 2007
Comm. Math. Phys. 270(2) 359 - 371 (March 2007)
New Work.
2Simulating evolution quantum state generation
3(No Transcript)
4Classical Preprocessor
5Background
Feynman 1982 Quantum Computer would
efficiently simulate dynamics of quantum
systems. Lloyd 1996 Formalized conjecture,
assumed tensor product structure, showed
efficient algorithm.
Lie-Trotter
a t3/2
ATS 2003
Graph Colouring
a (d1)2 n6
Lie-Trotter
a t3/2
Childs 2004
Graph Colouring
a d2 n2
Lie-Trotter-Suzuki (kth order)
a t11/2k
Our Results
Deterministic Coin Tossing
a d2 logn
6Optimal in t nearly constant in n
logn is the height of the smallest tower of
powers of 2 that exceeds n
Lie-Trotter-Suzuki (kth order)
a t11/2k
Our Results
Deterministic Coin Tossing
a d2 logn
7j2
j1
j3
j4
8j2
j1
j3
9Cleanup
10(No Transcript)
11Hamiltonian H generates unitary break up
- H sum of local Hamiltonians
- Trotter (m2) eiHt?(eiH1t/2r eiH2t/r eiH1t/2r)r,
H?H1H2. - Number of steps for quantum computer N ? t3/2.
- Suzuki generalization of Trotter formula
- Suzuki proves for small ?
5 terms
12Lemma Strict bound for Lie-Trotter-Suzuki
13Theorem Simulation cost nearly linear in time
- Theorem
- Optimal choice of k
- Then
14Simulation time cannot be sublinear in t
p
3p/4
p/2
p/4
t0
15Lemma (decomposition of H unknown)
16Graph associated with H
Connect x to yk (x) with an edge of weight ak (x)
17Symmetrically labeled graphs
18Non-symmetric case
Modify labeling to be symmetric (with an overhead
cost)
We now have d 2 labels instead of d labels, but a
symmetric labeling
(a, b)
(a, b)
x
y
(1, 2)
with z lt y
(1, 2)
(1, 3)
(1, 3)
(1, 3)
with y lt w
Problem!
(1, 3)
19Graph with monochromatic paths
To break up the paths, we increase the number of
colours
20x lt y lt z lt w
Deterministic coin-tossing Cole Vishkin 86
x
(a,b, x
y' ? (i, yi), where i min j yj ? zj
y
(a,b, y
z
(a,b, z
w
(a,b, w
Note still a valid coloring! x' ? y' y' ? z'
z' ? w'
n bits
log(n)1 bits
d 2 2n colours
21Breaking up the paths II
O(log(n)) iterations
x
x
(a,b, x
x'
y
y
(a,b, y
y'
z
z
z'
(a,b, z
w
w
w'
(a,b, w
n bits
log(n)1 bits
log(log(n)1)1 bits
d 2 2n colors
6 elements
Just 5 iterations for n ? 101037
22(No Transcript)
23Further Reading
- S. Lloyd, Science 273, 1073 (1996).
- R. P. Feynman, Int. J. Th.. Phys. 21, 467 (1982).
- D. Aharonov and A. Ta-Shma, Proc. ACM STOC, 20
(2003). - M. Suzuki, Phys. Lett. A 146, 319 (1990) JMP 32,
400 (1991). - A. Childs, Ph.D. Thesis, MIT (2004).
- R. Cole and U. Vishkin, Inform. and Control 70,
32 (1986). - N. Linial, SIAM J. Comp. 21, 193 (1992).
- A. Childs, R. Cleve, E. Deotto, E. Farhi, S.
Guttman, and D. Spielman, Proc. ACM STOC, 59
(2003). - R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R.
de Wolf, J. ACM 48, 778 (2001). - G. Ahokas, D. W. Berry, R. Cleve, and B. C.
Sanders, Comm. Math. Phys. 270(2) 359 - 371
(March 2007) quant-ph/0508139.