JavaSeis Parallel Arrays - PowerPoint PPT Presentation

About This Presentation
Title:

JavaSeis Parallel Arrays

Description:

Ken Kennedy, Rice University 1993. Colorado School of Mines. Dave Hale, Mines ... Last dimension is spread across processors (Decomposition, BLOCK or CIRCULAR) ... – PowerPoint PPT presentation

Number of Views:424
Avg rating:3.0/5.0
Slides: 28
Provided by: chuckc65
Category:

less

Transcript and Presenter's Notes

Title: JavaSeis Parallel Arrays


1
JavaSeis Parallel Arrays
  • JavaSeis data structures
  • Synchronous parallel model
  • Arrays in Java
  • mpiJava
  • Parallel Distributed Arrays
  • Examples

2
JavaSeis Data Structures
  • View data as N-dimensional array
  • Most common view is a series of 3D volumes
  • Use generic names for each axis Sample, Trace,
    Frame, Volume, Hypercube,
  • Associate LogicalNames with each axis
  • Time, Offset, X-Line, InLine
  • Time, Channel, Shot, Swath

3
JavaSeis Dataset Logical View
Frame
Sample
Volume
Trace
4
JavaSeis Bounding Box
X-Line
InLine
5
Parallel Distributed Objects
Node 0
Node 1
Node 2
Node 3
pdoRead
pdoRead
pdoRead
pdoRead
pdoExec
pdoExec
pdoExec
pdoExec
pdoWrite
pdoWrite
pdoWrite
pdoWrite
6
The Transpose Problem
CPU 1
CPU 0
CPU 2
CPU 3
Local Access
Remote Access
7
Data Parallel Transpose
CPU 1
CPU 0
CPU 2
CPU 3
Local Tile Transpose
8
Arrays in Java
  • 1D arrays or arrays of arrays
  • Subarrays and multi-dimensional views of a 1D
    array are not supported by the language
  • Subarrays are constructed by passing the full
    array and an upper and lower bound
  • Example reference from Matuszkek, University of
    Pennsylvania

9
Design Sources
  • NCAR / UCAR NetCDF
  • University Center for Atmospheric Research
  • High Performance Fortran
  • Ken Kennedy, Rice University 1993
  • Colorado School of Mines
  • Dave Hale, Mines Java Toolkit
  • Landmark ProWESS / SeisSpace
  • ARCO Parallel Seismic Environment

10
DistributedArray Class Structure
mpiJava
java.lang.Array
TransposeType
IMultiArray MultiArray
ITranspose Transpose
IParallelContext MPIContext
DistributedArray
Decomposition
11
parallel and array packages
  • org.javaseis.parallel
  • IParallelContext, ParallelContext
  • Message passing support
  • Decomposition
  • Define decompositions for array dimensions across
    processors
  • org.javaseis.array
  • IMultiArray, MultiArray
  • Containers for Fortran style multidimensional
    arrays
  • ITranspose, Transpose, TransposeType
  • Transpose operations for Fortran style arrays
  • DistributedArray
  • Extends MultiArray to distribute across processors

12
MultiArray Design Targets
  • 1D Java arrays of primitive elements or Objects
  • A superimposed "shape" that follows Fortran
    conventions
  • Access via "range" triplets (start,end,increment)
  • Ranges for Java zero based indexing or Fortran 1
    to N based indexing
  • Access to the "native" storage array for more
    arbitrary access
  • Array "elements" can have multiple values (i.e.
    complex, multi-component)
  • Designed to be extended to provide JavaSeis
    DistributedArrays
  • Allow use of other array utility classes
    (java.util.Arrays, edu.mines.jtk.dsp.Array)

13
Transpose Operations
  • TransposeType
  • Java enum that defines the set of available
    transpose operations (i.e. T312, T1243, T21)
  • ITranspose, Transpose
  • Interface and pure java implementation
  • In-place 2D transpose is the basic operation
  • Extended to 132 transpose for 3D arrays
  • Combinations yield full set of 3D transposes
  • A single 1243 transpose provided for 4D

14
Message Passing
  • IParallelContext
  • Interface for the minimal set of message passing
    needed to support JavaSeis Parallel Arrays
  • Send, Receive, getSize, getRank
  • Barrier, Broadcast (optional)
  • Shift, Transpose, BinaryTree built from the above
  • Init and Finish

15
MPI for Java
  • mpiJava from Syracuse University (NPAC) selected
    for SeisSpace
  • Java wrappers for native MPI calls
  • Support for sending serialized objects
  • MPIContext implements IParallelContext
  • MPICH for native methods
  • Mpirun np 16 machinefile machines.txt java
    ClassName arguments

16
DistributedArray
  • Extends MultiArray
  • Requires IParallelContext for constructor
  • Adds distributed tiled transpose (ttran)
  • Last dimension is spread across processors
    (Decomposition, BLOCK or CIRCULAR)
  • Transpose operations support arbitrary
    distribution of a single dimension
  • Multiple decompositions possible but not
    currently supported

17
Decomposition
  • Design concept from High Performance Fortran
  • Default decomposition is BLOCK
  • Allocates a fixed number of array indices per
    node
  • Remainder is pushed to the edge, NOT evenly
    allocated
  • May result in zero elements on high rank nodes
  • Simple start,end indexing with stride 1
  • CIRCULAR decomposition
  • Round robin allocation
  • Remainder spread across nodes
  • Good for load balancing
  • Permutation logic required to keep track of
    indices

18
BLOCK vs CIRCULAR Decomposition 13 array indices
on 4 nodes
141 581 9121 13131
1134 2104 3114 4124
19
Transform - Transpose Pattern
0
1
2
3
Time
0
1
2
3
X-Line
X-Line
InLine
InLine
Frequency
20
Transform - Transpose Pattern
  • // Create a 3D distributed array
  • DistributedArray a new DistributedArray(
    Seis.getParallelContext(), 3, float.class, new
    int 512,256,128, Decomposition.BLOCK )
  • // Transform x axis of an array in xyz order
  • computeTransform1D( a )
  • // Transpose to yxz
  • a.tran213()
  • // Transform y axis
  • computeTransform1D( a )
  • // Transpose to zyx
  • a.tran132()
  • // Transform z axis
  • computeTransform1D( a )
  • // Transpose back to xyz
  • a.tran321()

21
Distributed Array Padding
  • Decomposition will likely have a remainder that
    requires padding
  • Constructor allocates an array that accounts for
    padding
  • Use constructor with an array of Decompositions
    if transpose operations will be used
  • Index and range methods only traverse the live
    section of the array

22
Distributed Array Padding
Padded Array
Decomposition Padding
Partial Array Section
Live Section
23
Planned Additions
  • Support for other patterns
  • Transpose-Reduce
  • Transpose-Overlap
  • Arrays of Arrays optional variable length
  • floata new float10
  • for (int i0 ilt10 i)
  • ai new floati
  • Parallel Sorting
  • Requires variable length array of arrays

24
Reduce - Transpose Pattern
PDO ( x, y f )
PDO ( x, y n )
PDO ( x, n y )
25
The Overlap-Transpose Pattern
Overlap-Expand Locally
Transpose to Distributed Overlap
Distributed array
0
1
2
3
0
1
2
3
0
1
2
3
26
Parallel Data Sort
Sort
27
Parallel Data Sort
Block parallel output
Variable length Transpose and resort within tile
Write a Comment
User Comments (0)
About PowerShow.com