Chapter 3 Analytical Models of Random Phenomenon - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Chapter 3 Analytical Models of Random Phenomenon

Description:

Title: PowerPoint Presentation Author: Lulu Zhang Last modified by: cezll Created Date: 9/1/2003 6:32:33 AM Document presentation format: On-screen Show – PowerPoint PPT presentation

Number of Views:214
Avg rating:3.0/5.0
Slides: 39
Provided by: Lul62
Category:

less

Transcript and Presenter's Notes

Title: Chapter 3 Analytical Models of Random Phenomenon


1
Chapter 3 Analytical Models of Random Phenomenon
CIVL 181 Modelling Systems with Uncertainties
  • Instructor Prof. Wilson Tang

2
Random variables
  • A device to
  • formalize description of event
  • facilitate computation of probability

3
a) formalize description of event
Chapter 2 Chapter 3
Excessive settlement X gt 3 cm
Delay in project T gt 60 days
4
b) facilitate computation of probability
introduce algebra and calculus
5
Discrete random variables
Bulldozers example
GGG BBG GGB BGB GBG GBB BGG
BBB
X no. of good bulldozers
Assume P(G) P(B) ½ and s. i.
6
PMF
  • Complete information about X
  • Compute probability of any event relating to X

e.g.
P(X gt 1) ?
3/8 1/8 1/2
7
CDF
P(X lt x)
1
7/8
1/2
1/8
x
0
1
2
3
8
Continuous random variables
Displacement
P( X3 ) ? ? 0 no area / width
9
CDF
P( 3ltxlt4)
FX(4) FX(3)
10
CDF
PX(x)
FX(x)
PMF
fX(x)
FX(x)
PDF
11
Example
(a) Determine a
fX(x)
? area 1
3a
10a30a1
?a 0.025
a
x
20
5
10
15
X location of an accident
12
(b) P( 15 lt x lt 20) ?
Method 1 by area
P( 15 lt x lt 20) 50.075 0.375
Method 2 by integration
13
Method 3 by CDF
P( 15 lt x lt 20) FX(20) FX(15) 1-0.625
0.375
14
Example
fX(x) 2 e-2x x gt 0
X snowfall in m
a)
P ( x lt 1)
Is this probability reasonable?
15
fX(x)
fX(x) 2 e-2x x gt 0
2.0
0.27
x
1
0
P ( x lt 1)
16
b)
Open door, find out 1 m snow, then P(no class) ?
P( X gt1.5 X gt1)
17
Example
FX(x)
1.0
ln (x/3)
x
h
3
0
18
a) h ?
ln ( h/3 ) 1
h 3e 8.15
b) P (4ltxlt5) ?
ln (5/3) ln (4/3) 0.511 - 0.288 0.223
19
c) fX(x) ?
Check
20
Main descriptors of R.V.
  • The PMF or PDF completely define the r.v.
  • Descriptors give partial information about the
    r.v.

21
Mean value
Define ? E(X)
expected value of X or mean value of X
a measure of central tendency
22
Example
E(X) 20.130.440.450.1 3.5
23
Consider another PMF
E(X) 3.5
24
Variance
Define Var (X)
25
Standard deviation ?X
Coefficient of variation ? ?X/?X
26
for continuous r.v.
centroid
Moment of inertia
27
Example
28
For a previous example
29
Other measure of central tendency
  • Median xm - 50 percentile value
  • Mode x - most likely value

30
Example
31
Measure of spread
  • Standard deviation ?X
  • ?X dimensionless
  • range

32
Measure of skewness
or
gt 0 positive skewness lt 0 negative
skewness 0 symmetrical
33
Expected value of function
recall
34
Example delay
weeks
Penalty 2000x2
E penalty E 2000x2
35
Lets try a short cut
E penalty
2000 E(x)2 2000(1.5)2 4500 ? 4667
Why?
Only an approximation
36
Recall
After some algebra,
37
Example total load on the roof
fX(x)
x
6
3
38
0.64
mode 3
xm 3.79
Write a Comment
User Comments (0)
About PowerShow.com