Title: Geometric Algebra GA
1Geometric Algebra (GA)
- Werner Benger, 2007
- CCT_at_LSU SciViz
2Abstract
- Geometric Algebra (GA) denotes the re-discovery
and geometrical interpretation of the Clifford
algebra applied to real fields. Hereby the
so-called geometrical product allows to expand
linear algebra (as used in vector calculus in 3D)
by an invertible operation to multiply and divide
vectors. In two dimenions, the geometric algebra
can be interpreted as the algebra of complex
numbers. In extends in a natural way into three
dimensions and corresponds to the well-known
quaternions there, which are widely used to
describe rotations in 3D as an alternative
superior to matrix calculus. However, in contrast
to quaternions, GA comes with a direct
geometrical interpretation of the respective
operations and allows a much finer differentation
among the involved objects than is achieveable
via quaternions. Moreover, the formalism of GA is
independent from the dimension of space. For
instance, rotations and reflections of objects of
arbitrary dimensions can be easily described
intuitively and generic in spaces of arbitrary
higher dimensions. - Due to the elegance of the GA and its wide
applicabililty it is sometimes denoted as a new
fundamental language of mathematics. Its
unified formalism covers domains such as
differential geometry (relativity theory),
quantum mechanics, robotics and last but not
least computer graphics in a natural way. - This talk will present the basics of Geometric
Algebra and specifically emphasizes on the
visualization of its elementary operations.
Furthermore, the potential of GA will be
demonstrated via usage in various application
domains.
3Motivation of GA
- Unification of many domains quantum mechanics,
computer graphics, general relativity, robotics - Completing algebraic operations on vectors
- Unified concept for geometry and algebra
- Superior formalism for rotations in arbitrary
dimensions - Explicit geometrical interpretation of the
involved objects and operations on them
4Definition Algebra
- Vector space V over field K with multiplication
? - Null-element, One-element, Inverse
- Commutative? a?b b?a
- Associative? (a?b)?c a?(b?c)
- Division algebra?
- ??a?0 ? a-1 such that a ? a-1 1 a-1 ? a
- Alternatively a?b0 ? a0 or b0
5Historical Roots
- Complex Plane (Gauss 1800)
- Real/Imaginary part aib where i2 -1
- Associative, commutative division-algebra
- Polar representation r ei? r ( cos ? i sin
? ) - Multiplication corresponds to rotation in the
plane
i
sin ?
?
cos ?
6Historical Roots, II
- William Rowan Hamilton (1805-65) invents
Quaternions (1844) - Generalization of complex numbers
- 4 components, non commutative ab ? ba (in
general) - Basic idea iijjkk ijk -1
- Alternative to younger vector- and matrix algebra
(Josiah Willard Gibbs, 1839-1903) - p(p,p), q(q,q), p?q(pq - p ? q , pq pq
p?q) - rotation in R3 are around axis of the vector
component v q v q-1
7Historical Roots, III
- Construction by Cayley-Dickson
- (a,b)(c,d) (ac-d b, a dcb)
- hypercomplex numbers
- octaves/octonions (8 components)
- sedenions/hexadekanions (16 components)
-
- incremental loss of
- commutativity (quaternions,)
- associativity (octonions,)
- division algebra (sedenions,)
8Renaissance of the GA
- 1878 Clifford introduces geometric algebra,
but dies at age 34 - ? superseded by Gibbs vector calculus
- 1920er Renaissance in quantum mechanics (Pauli,
Dirac) - algebra on complex fields
- no geometrical interpretation
- 1966-2005 David Hestenes (Arizona State
University) revives the geometrical
interpretation - 1997 Gravitation theory using GA (Lasenby,
Doran, Gull Cambridge) - 2001 Geometric Algebra at SIGGRAPH (L. Dorst, S.
Mann)
9(No Transcript)
10Geometry and Vectors
- Geometric interpretation of a vector
- Directed line segment or tangent
- Vector-algebra in Euclidean Geometry or Tp(M)
-
- Addition / subtraction of vectors ab
- Multiplication / division by scalars ? a
- Multiplication / Division of vectors??
Multiplication of vectors
11Complete Vector-algebra?
- Invertible product of vectors?
- What means vector-division a/b ?
- abC ? ba-1C
- Note C not necessarily a vector!
- Inner product (not associative) a?b ? Skalar
- Not invertible
- e.g. a?b 0 with a?0, b?0 but orthogonal
- Outer product (associative) a?b ? Bivektor
- Generalized cross-product from 3D a?b
- Not invertible
- e.g. a?b 0 with a?0, b?0 but parallel
Multiplikation von Vectoren
12Bivector a?b
- Describes the plane spun by a and b, sign is
orientation
b?a -a?b
a?b
Defined in arbitrary dimensions, anti-symmetric
(? not commutative), associative, distributive,
spans a vector space, does not require additional
structures
Multiplikation von Vektoren
13Constructing Bivectors
- No unique determination of the generating vectors
possible
a?b (a?b)?b
b
b?b 0
Basis-element
a?b
a b sin ?
Multiplikation von Vektoren
14Bivectors in R3
- 3 Basis-elements
- ex?ey, ey?ez, ez?ex
- Generalization ex?ey?ez is a volume
Multiplikation von Vektoren
15Vectorspace of Bivectors
Linear combinations possible e.g. ex?ey,
ez?ex
Multiplikation von Vektoren
16Coordinate representation of ?-product in R3
- Generic Bivector
- A Axy ex?ey Ayz ey?ez Azx ez?ex
- (axex ayey azez)?(bxex byey bzez)
axex?bxex axex?byey axex?bzez - ayey?bxex ayey?byey ayey?bzez
- azez?bxex azez?byey azez?bzez
- (axby - aybx)exy(aybz-azby)eyz(axbz-azbx)exz
Multiplikation von Vektoren
17Inner product a?b
a?b a b cos ? b?a
Symmetric (commutative), requires quadratic form
(Metric) as additional structure, not associative
(a?b)?c?? a?(b?c)
Multiplikation von Vektoren
18Comparing the products
- Inner product
- Not associative
- (a?b)?c ? a?(b?c)
- Commutative
- a?b b?a
- Not invertible
- Yields a scalar
- Outer product
- Associative
- (a?b)?c a?(b?c)
- Not commutative
- a?b ? b?a
- Not invertible
- Yields a bivector
19Geometric Product
- Requirements and definition
- Structure of the operands
- Calculus using GP
- Rotations using GP
Das Geometrische Produkt
20Requirements to GP
- For elements A,B,C of a vector space with
quadratic form Q(v) i.e. a metric g(u,v)
Q(uv) - Q(u) Q(v) we require - Associative (AB)C A(BC)
- Left-distributive A(BC) ABAC
- Right-distributive (BC)A BACA
- Scalar product A2 Q(A) A2
Das Geometrische Produkt
21Properties of the GP
- Right-angled triangle
- ab2 a2b2
- (AB)(AB) AABAABBB A2 B2
- AB -BA for A?B 0 anti-symm if orthogonal
- However not purely anti-symmetric
- AB2 A2 B2 for A?B 0 (i.e. A,B
parallel B?A)
Das Geometrische Produkt
22Geometric Product
- William Kingdon Clifford (1845-79)
- Combine inner and outer product to defined the
geometric product AB (1878) - AB A?B ? A?B
- Result is not a vector, but the sum of a scalar
bivector! - Operates on multivectors
- Subset of the tensoralgebra
- Geometric Product is invertible!
Das Geometrische Produkt
23Multi-vector components
- R2 A A0 A1 e0 A2 e1 A3 e0?e1
- R3 A
- A0
-
- A1 e0 A2 e1 A3 e2
-
- A4 e0 ?e1A5 e1 ?e2A6 e0 ?e2
-
- A7 e0 ?e1 ?e2
2.7819
Struktur von Multivektoren
24Structure of Multi-vectors
Linear combination of anti-symmetric basis
elements 2n components
0D 1
Scalar 1D 1
Scalar, 1 Vector 2D 1
Scalar, 2 Vectors, 1 Bivector 3D
1 Scalar, 3 Vectors, 3 Bivectors, 1 Volume 4D
1 Scalar, 4 Vectors, 6 Bivectors, 4
Volume, 1 Hyper-volume 5D
Struktur von Multivektoren
25Inversion
- Given vectors a,b
- a?b ½ (ab ba) symmetric part
- a?b ½ (ab - ba) anti-symmetric part
- a?b -(a?b) ? (ex?ey?ez) Dual in 3D
Rechnen mit Multivektoren
26Reflection at a Vector
- Unit vector n, arbitrary vector v
- Vector v projected to n v(v ? n) n
- Reflected vector ?w v- v v 2v
- thus w v 2(v ? n) n
- with GP w v 2½(vnnv) n v vnn nvn
- ? w -nvn
Rechnen mit Multivektoren
27Rotations
- Identification with Quaternions
- Rotation in 2D
- Rotation in nD
- Rotation of arbitrary Multivectors in nD
Rotation
28Geometrical Quadrate
- Consider (AB)2 of Bivector-basis element where
A1, B1, A?B 0 - ? ABA?B-BA
- (AB)2 (AB) (AB) -(AB) (BA)-A(BB) A -1
Basiselement
Rotation
29Quaternion Algebra
- 2D complex numbers
- i exey, i2 -1
- 3D quaternions
- i ex?ey exey, j ey?ez eyez,
kex?ezexez - i2 -1, j2 -1 , k2 -1
- ijk (exey)(eyez)(exez) -1
- 4D Biquaternions (complex quaternions, spacetime
algebra)
Rotation
30Rotation and GA
- Right-multiplication of Vectors by Bivectors
- ex i ex (exey) (exex ) ey ey
-
- ey i ey(exey)-ey(eyex) -ex
-
Rotation
31Generic Rotation in 2D
- Multiple Rotation
- ex i i (ex i) i ey i -ex -1 ex
- Arbitrary vector
- A Ax ex Ay ey
- A i Ax ex i Ay ey i Ax ey - Ay ex
- Rotation by arbitrary angle
- A cos?? A i sin?? A e i?
- rotates vector A by angle ? in plane i
- Inverse rotation Ai -iA ? ? -?
- A ei? e-i? A
Rotation
32Rotor in 2D
- Rotor
- R e?i cos?? i sin?? mit i²
-1 - A ei? e-i? A e-i?/2 A e?i/2 R A R-1
- With Re-i?/2 Rotor
- R-1ei?/2 inverse Rotor
- A R-2 R2 A R A R-1
- Product of rotors is multiple rotation RABCD,
R-1DCBA is reverse R -
Rotation
33Rotor in nD
- Rotor in plane U, Vektor v
- R cos?? sin?? U U² -1
- Expect Rv or vR-1 or R v R-1
- Problem With arbitrary vector v there would be a
tri-vector component - Rv v cos?? sin?? (U ? v U ? v )
- iff U?v ? 0 ( v not coplanar with U)
Rotation
34Rotation in nD
- Consider R v R-1 mit v v- v
- We have U?v- 0 d.h. Uv- U?v-
- u1?u2?v- - u1?v-?u2 v-? u1? u2 v-?U v-U
- i.e. v- commutes with U, thus also R
- R v R-1 R v- R-1 R v R-1
- R v- R-1 (cos?? sin?? U) v- (cos?? -
sin?? U) - v-(cos²? - sin²?? U²)
v- - R v R-1 v- e?U v e-?U v- v e-2?U
Rotation
35Rotation as multiple reflection
- Alternative Interpretation
- Reflect vector v by vector n, then by vector m
- v ? - nvn ? m nvn m mn v nm
- Operation mn is ScalarBivector (Rotor!)
- Rotor R mn
- Inverse Rotor R-1 nm
- Theorem Rotation is consecutive reflection on
two corresponding vectors with the rotation angle
equal to twice the angle between these vectors
Rotation
36Applications
- Crystallography
- Differential Geometry
- Maxwell Equations
- Quantum Mechanics
- Relativity
37Describing Symmetries
- Multiple reflections by r1,r2,r3, are
consecutive products of vectors - r3r2r1 v r1r2r3 (not possible w.
quaternions) - Symmetry groups in molecules and crystals can be
characterized by - three unit vectors a,b,c
- Integer triple p,q,r
- where (ab)p (bc)q (ca)r -1
- e.g. Methane (Tetrahedron) 3,3,3, Benzene
6,2,2
38Differential Geometry
- Derivative operator
- ? eµ ?µ with ?µ?/?xµ, eµe??µ?
- Applicable to arbitrary multi-vectors
- E.G. with v a vector field
- ?v ??v ? ? v
- where ??v Gradient (Scalar)
- and ??v Curl (Bivector)
39Maxwell in 3D
- Faraday-Field F E ?B
?exeyez - Current density J ?? - j
- Maxwell-Equation ?F/ ?t ? F J
- ?F ?E ??B ??E ??E ???B ???B
- Scalar ??E ?
- Vector ?E / ?t ???B -j
- Bivector ? ?B / ?t ??E 0
- Pseudoscalar ???B 0
40Cl3(R) Spinors
- GA in 3D can be represented via Pauli-matrices
- 4 complex numbers ? 8 components 23
- Basis-vectors ex,ey,ez with GP provide same
algebraic properties as Pauli-matrices ?x,?y,?z - Pauli-Spinor ?? (2 complex numbers, 4
components), - due to ? ?? real, can be written as
- ? ?½ eB?
- thus is a Rotor (even multi-vector 1 Scalar, 3
bivector-component), i.e. ? is the operation to
stretch and rotate ? describes interaction (of an
elementary particle) with a magnetic field
??x ( )
??z ( )
??y ( )
0 1 1 0
1 0 0 -1
0 -i i 0
41Spacetime Algebra (STA)
- GA in 4D with Minkowski-Metric (,-,-,-)
- Chose orthogonal Basis ?0, ?1, ?2, ?3
- where 2?µ??? ?µ?? ???µ 2?µ? i.e. ?02
-?k2 1 - Structure 1,4,6,4,1 ( n4 , 16-dimensional )
- Bivector-Basis ??k ?k ?0
- Pseudo-scalar ??? ?0 ?1 ?2 ?3 ?1?2?3
- 1 ?µ ?k, ??k ??µ
? - 1 Scalar 4 Vector 6 Bivectors 4 Pseudo-vectors
1 Pseudo-scalar
42Basis-Bivectors in STA
- ?k 3 timelike bi-vectors
- ??k 3 spacelike
bivectors
?z
?x
?y
??x ? ?y?z
43Structure of Bivectors
- Any bi-vector can be written as
- B Bk?k ak ?k ?bk?k a ?b
- a,b 3-Vectors (relative ?0)
- a timelike component
- b spacelike component
- Classification in
- complex Bivector
- No common axes, spans the full 4D space
- simple Bivector
- One common axis, can be reduced to a single
Blade
44Spacetime-Rotor
- Spacetime-rotor R eB ea?b ? eB B/B
- R ea?b eae?b
- cosh a sinh a cos b ? sin b
- cosh a a/a sinh a cos b ? b/b
sinb - Interpretation
- rotation in spacelike plane b by angle b
- hyperbolic rotation in timelike plane a?a ?0
with boost-factor (velocity) tanha - ? Lorentz-transformation in ?a , ?0 !
45Maxwell Equations in 4D
- Four-dimensional gradient ? ?µ?µ
- Elektro-magnetic 4-potential A
- F ??A ?A - ??A
- with ??A0 is Lorentz-gauge condition
- Faraday-Field F (E ?B) ?0
- Pure Bivector (3Dvector bi-vector), but
complex - E timelike component, B spacelike
- Maxwell-Equation ?F J
46Dirac-Equation
- Relativistic Momentum in Schrödingereqn
- Ep2/2m ? E2 m2 p2
- (a0mc² ? aj pj c) ? i h ?? / ? t
- where aj Dirac-matrices (4?4)
- in Dirac-basis ?0 a0, ?i a0 ai mit ?µ,??
2 ?µ? - covariant formulation
- ? ?µ ?µ ? mc² ?
- In GA basis vectors ?0, ?1, ?2, ?3 provide same
algebraic properties as Dirac matrices - ? ? mc² ? ?0
47GA in Computergraphics
- Homogeneous Coordinates (4D)
- Additional coordinate e?, 3-vector Ai / A?
- Allows unified handling of directions and
locations, standard in OpenGL - conform, homogeneous coordinates (5D)
- Additional coordinates e0, e?
- Signature (,,,,-) , e0?e?-1, e0 e?
0 - Allows describing geometric objekts (sphere,
line, plane ) as vectors in 5D - Unions and intersections of objects are algebraic
operations (meet, join)
48Objects in conform 5D GA
49Implementations
- Runtime evaluation
- geoma (2001-2005), GABLE (symbolic GA)
- Matrix-based
- CLU (2003)
- Code-Generation
- Gaigen (-2005)
- Template Meta Programming
- GLuCat, BOOST (2003)
- Extending programming languages (proposed)
50Literatur
- http//modelingnts.la.asu.edu/
- http//www.mrao.cam.ac.uk/clifford
- David Hestenes New Foundations for Classical
Mechanics (Second Edition). ISBN 0792355148,
Kluwer Academic Publishers (1999) - Oersted Medal Lecture 2002 Reforming the
Mathematical Language of Physics (David Hestenes) - Geometric (Clifford) Algebra a practical tool
for efficient geometrical representation (Leo
Dorst, University of Amsterdam) - An Introduction to the Mathematics of the
Space-Time Algebra (Richard E. Harke, University
of Texas) - EUROGRAPHICS 2004 Tutorial Geometric Algebra and
its Application to Computer Graphics (D.
Hildenbrand, D. Fontijne, C. Perwass and L.
Dorst) - Rotating Astrophysical Systems and a Gauge Theory
Approach to Gravity (A.N. Lasenby, C.J.L. Doran,
Y. Dabrowski, A.D. Challinor, Cavendish
Laboratory, Cambridge), astro-ph/9707165