Title: Mechanism of The Bainite Transformation in Steels
1Mechanism of The Bainite Transformation in Steels
Harry Bhadeshia
2Bundy (1965)
3body-centred cubic
cubic close-packed
4DISPLACIVE
RECONSTRUCTIVE
5(No Transcript)
6upper bainite
1 µm
7lower bainite
8Surface 1
Surface 2
50 µm
Srinivasan Wayman, 1968
9s
d
c
r
1
10(No Transcript)
11(No Transcript)
1250 µm
13(No Transcript)
14Carbon supersaturated plate
Carbon diffusion into
Carbon diffusion into
austenite and carbide
austenite
precipitation in ferrite
Carbide precipitation
from austenite
LOWER BAINITE
UPPER BAINITE
(Low Temperature)
(High Temperature)
15Fe-0.4C wt
Decarburisation time / s
Temperature / C
16(No Transcript)
17Temperature
Ae3'
T'
o
x
Carbon in austenite
18(No Transcript)
19(No Transcript)
20Growth is diffusionless.
Strain energy must be accounted for.
21(No Transcript)
22Carbon supersaturated plate
Carbon diffusion into
Carbon diffusion into
austenite and carbide
austenite
precipitation in ferrite
Carbide precipitation
from austenite
LOWER BAINITE
UPPER BAINITE
(Low Temperature)
(High Temperature)
23(No Transcript)
24Oka and Okamoto
25Ohmori and Honeycombe
26Thermodynamics
g
a
Gibbs free energy
x
Carbon
27(No Transcript)
28(No Transcript)
29Each point represents a different steel
Bhadeshia, 1981
30The nucleation of bainite must involve the
partitioning of carbon
Why does the required free energy vary linearly
with T?
31hexagonal close-packed
cubic close-packed
Christian, 1951
32Brooks, Loretto and Smallman, 1979
33Olson Cohen, 1976
34(No Transcript)
35(No Transcript)
36(No Transcript)
37Nucleation of bainite must involve the
partitioning of carbon.
Mechanism of nucleation is otherwise identical to
that of martensite.
38(No Transcript)
39Fe-2Si-3Mn-C wt
800
B
S
600
Temperature / K
400
M
S
200
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Carbon / wt
40Fe-2Si-3Mn-C wt
1.E08
1 year
1 month
Time / s
1.E04
1.E00
0
0.5
1
1.5
Carbon / wt
41g
g
a
a
a
20 nm
42Summary
The mechanism of transformation is
displacive. Transformation temperature higher
than martensite. Bainite grows without
diffusion. But carbon then escapes into the
residual austenite. Shape deformation plastically
accommodated. Sub-unit mechanism of
growth. Nucleation must involve carbon
partitioning.
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48Watson and McDougall, 1973
49(No Transcript)
50(No Transcript)
51(No Transcript)
52Summary
Mechanism displacive but carbon must partition
during growth. Pairs of plates grow together to
minimise strain.