Stochastic Production Functions II: Maximum Likelihood - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Stochastic Production Functions II: Maximum Likelihood

Description:

Stochastic Production Functions II: Maximum Likelihood Lecture XI Normal-Half Normal Model Assumptions about Errors: Distribution functions: The distribution function ... – PowerPoint PPT presentation

Number of Views:100
Avg rating:3.0/5.0
Slides: 23
Provided by: Charle776
Category:

less

Transcript and Presenter's Notes

Title: Stochastic Production Functions II: Maximum Likelihood


1
Stochastic Production Functions II Maximum
Likelihood
  • Lecture XI

2
Normal-Half Normal Model
  • Assumptions about Errors

3
Distribution functions
  • The distribution function of v follows the
    standard zero-mean normal distribution function

4
  • The half-normal distribution is represented by

5
  • Assuming independence

6
  • Since e v - u , or by definition of the
    composed error term

7
  • Integrating u out, we obtain the marginal
    distribution function for e
  • From Weinstein

8
  • x is distributed normal, while y is distributed
    half-normal

9
  • where

10
  • Note that if a 0

11
  • Substituting in

12
  • By integration

13
  • Again note that if a 0

14
  • Thus,

15
  • Note that as ?-gt 0 , either sv2 -gt 8 or su2 -gt 0
    or the symmetric error dominates the one-sided
    component.

16
  • Note that as ?-gt 8 , either su2 -gt 8 or sv2 -gt 0
    or the symmetric error dominates the one-sided
    component.

17
Maximum Likelihood
  • The parameters of the model can be estimated by
    maximizing

18
Results
Half-Normal Estimates Half-Normal Estimates
Parameter Estimate
A_0 4.99564
(0.03574)
A_1 0.00903
(0.00706)
A_2 0.00504
(0.00500)
A_3 0.00452
(0.00424)
sigma 0.45639
(0.02126)
lambda 5.08765
(0.77545)
19
  • More mess

20
(No Transcript)
21
(No Transcript)
22
Comparison Comparison Comparison Comparison
Stochastic Frontier Stochastic Frontier Ordinary Least Squares Ordinary Least Squares
Parameter Estimate Parameter Estimate
A_0 4.99564 A_0 4.58582
(0.03574) (0.05570)
A_1 0.00903 A_1 0.01265
(0.00706) (0.01171)
A_2 0.00504 A_2 0.01677
(0.00500) (0.00728)
A_3 0.00452 A_3 0.01322
(0.00424) (0.00625)
Write a Comment
User Comments (0)
About PowerShow.com