EM????????????? - PowerPoint PPT Presentation

About This Presentation
Title:

EM?????????????

Description:

* Prospective cohort study : one can usually exclude a ... – PowerPoint PPT presentation

Number of Views:87
Avg rating:3.0/5.0
Slides: 59
Provided by: kazun5
Category:
Tags: predictive | spss

less

Transcript and Presenter's Notes

Title: EM?????????????


1
?????????
  • ????????
  • ????

2
????
  • ?????????
  • ???????????
  • EM?????????????
  • ???????
  • ???????????????
  • ??????EM??????
  • ??????????

3
???????????????
  • ??????????? Complete Case

  • (CC) ?
  • ?????????????, ?????
  • ?????? Pairwise Deletion
  • ????????????????????????,???????????
  • ???????? Imputation Method
  • ????????????(?????,????,)
  • ???????????
  • ???(EM???)

4
????????????
and
?????? ??????
5

response variable missing indicator
variable the joint distribution of x and r
the marginal distribution of the observed data
6
?????? f (x,r)????2?????
  • Selection models
  • f ( x , r ) f ( x )P ( r x )
  • ???? ??????,???? x ??????
  • ?????????????
  • Pattern mixture models
  • f ( x , r ) f ( x r )P ( r )
  • ????????,?????? x ???????
  • ????, ????????,????????
  • ?????????????????????????

7
Selection Model v.s. Pattern Mixture Model
  • Selection Model
  • MAR???????,????????
  • ???????????????????
  • ???????????
  • NMAR????,?????????????
  • ???????
  • Pattern Mixture Model
  • NMAR????,????????
  • ????????????????????????????????
  • NMAR???,?????????????????
  • ?????????????????,???????
  • ??????????????

8
?????????????(1)
  • Missing Completely at Randam (MCAR)
  • P( r x ) P ( r )
  • ?????????????????????? x ?????
  • ????????????????,
  • Ex. P(r(1,1,,1))75,
    P(r(1,1,,0))10,

9
MCAR????,?????????????
No systematic difference between complete cases
and incomplete cases
CC ?, ??????
unbiased estimates of underlying marginal
means/profiles
10
?????????????(2)
  • Missing at Random (MAR)
  • P( r x ) P ( r xobs )
  • ??????????? ? xobs????????,
  • xmis?????
  • the joint distribution of the observed data
  • ????,MCAR???

11
Growth Curve Data (Potthoff Roy,1964)
x8
means the missing produced through a MAR
mechanism by Little(1987)
12
Missing at Random (MAR)
  • ????xobs?,????xmis???????r?????
  • ??????,?????????????????????
  • ????xmis???????r?????????????xobs
    ???????????????????, ????????????????????
  • ???????????xmis???????????????????, MAR
    ?????????????????

13
MAR ??????, non-response bias ??????
  • CC(Complete-case)?
  • ????????????

??????? Stratification Weighting
?????????,????????????????????????
14
????MCAR????????????????????????
  • Observed variables
  • Response Propensity ????????

  • Predicted Mean ?????

15
Response Propensity ???
  • Probability of missing based on covariate.
  • Missing at Random

Rosenbaum Rubin (1983)
and
approximately
16
Propensity ??????????
  • ?????????????????????????????( Propensity???)??
  • ???????Propensity????????????????
  • Propensity???????????????????,?????
  • Propensity????????,???????????????????????????,?
    ???????????????????????

17
???????????????
  • ??????????? Complete Case

  • (CC) ?
  • MCAR???, MAR????????
  • ?????? Pairwise Deletion
  • ????????????????????????,???????????
  • ???????? Imputation Method
  • ????????????(?????,????,)
  • ???????????
  • ???
  • ????

18
?????? Pairwise Deletion
  • ????????????????,???????
  • ?????????????????,????????

19
??????
  • ???????????????
  • ????????????????????
  • ??????????????,?????
  • ???CC?(???)????????????

20
Imputation(???)
  • ??????????????
  • ????????????
  • Marginal or Conditional imputation
  • Explicit or Implicit model imputation
  • Deterministic or Stochastic imputation
  • (using random
    numbers)
  • Univariate or Multivariate imputation
  • Single or Multiple imputation

21
2?????
  • Full loglikelihood
  • ??????????????
  • Partial loglikelihood
  • ????????????

????? partial likelihood ??????????? ?
22
Ignorability Rubin(1977)
  • ??????????,??????????????
  • ?????? ?
  • Sufficient conditions for ignorability
  • MAR
  • ???????????????? (f) ?????????? (q) ????
  • ??? MAR ??????????,ML? Lpartial ?????????,???
    efficient ??????
  • MAR ? key condition
  • Richer the observed data xobs , the more
    plausible the MAR assumption
  • NMAR ? more plausible, ???,???????????????????????
    ????

23
Missing at Random
Partial loglikelihood ????????????
has much simpler form than
24
Excel???
  • ????????????
  • ????
  • EM???????????

25
EM algorithm
  • A general algorithm for incomplete data problems
    that provides an interesting link with imputation
    methods
  • (k) converges to a maximum likelihood estimate
    of q
  • based on Lpartial , if a unique finite MLE
    of q exists.

26
DLR(1977)
  • E-step To calculate the conditional
  • expectation of Lc(q)
  • M-step To find q which maximize the
  • conditional expectation
    calculated
  • in the previous E-step

27
EM ???(Ignorable case)
  1. ?????????????
  2. ?????????????
  3. ???????????????????
  4. Logistic ??( missing covariates)
  5. Unbalanced repeated-measures models with
    structured covariance and with missing data
  6. ???????

28
??????????????
29
  • E-step

Sufficient statistics
30
  • E-step

Sufficient statistics
31

  • M-step

32
MAR????????
  • ????

33
?????(MAR?????)
x1
x2
m2
34
?????(MAR???)
x1
x2
m1
35
MAR???
36
??(??)
37
??(r0.8)
38
??
39
??
40
????
41
??????????????
42
??
43
???
  • ?????????? unique solution ???
  • ???????????,sensitivity check ??
  • ML ??,MAR????OK
  • MAR??????????????????????

44
Imputation(???)
  • ??????????????
  • ????????????
  • Marginal or Conditional imputation
  • Explicit or Implicit model imputation
  • Deterministic or Stochastic imputation
  • (using random
    numbers)
  • Univariate or Multivariate imputation
  • Single or Multiple imputation

45
Mean Imputation (Unconditional) ?????????
  • Available cases for each mean
  • MCAR???????????

?????????????????
46
Mean Imputation (Conditional) ???????????
  • Conditional on observed values in case
  • Regress Xp on (X1
    ,X2,,Xp-1)
  • Impute predictions

??????,????,??, ?????????????????????????
47
Mean Imputation??(????)??????
  • Marginal distributions and associations distorted
    ( no residual variance)
  • Conditional better than unconditional
  • Standard errors from filled-in data too small
  • no residual variance
  • n actually smaller
  • uncertainty of prediction

Stochastic Imputation
48
Cold deck?? Hot deck?(??????)
  • Cold deck ?
  • ?????????????????????
  • Hot deck ?
  • ?????????????(???)????????
  • ???????????????,?????????
  • ??????????????
  • Exact matching v.s. Random matching
  • ???????????

49
Deterministic imputation(??????)
  • Hot deck and Cold deck methods
  • Overall (unconditional) mean
  • Group (adjusted cell) mean
  • Predictive mean by regression model

More accuracy, but distort the distribution
The distribution becomes too peaked and the
variance is underestimated
50
Stochastic imputation?????
  • ????????????
  • ?????????(????????????)
  • EX.
  • Add a random residual from N ( m ,s 2 )
  • Stochastic Predictive mean
    imputation
  • ???????????????
  • Impute the value of a randomly selected case
  • Random hot deck method

51
Stochastic Predictive Mean Imputation
(Imputation from a Distribution)
  • Add a random residual from N ( m ,s 2 ) to the
    predictive mean
  • Impute

c.f. Predictive Mean Matching (more robust to
misspecification) Predictive Mean Stratification
Random Hot Deck
52
?????????
  • ??(1??????)???????????????????????
  • ?????????????????
  • Imputation??????????????????,
  • single value stochastic imputation???
  • multiple imputation

53
Imputation(???)
  • ??????????????
  • ????????????
  • Marginal or Conditional imputation
  • Explicit or Implicit model imputation
  • Deterministic or Stochastic imputation
  • (using random
    numbers)
  • Univariate or Multivariate imputation
  • Single or Multiple imputation

54
Multiple Imputation
  • ???(M)???????
  • ????????? M ?? ????
  • ???(M?????????????)?????1??????????????????????

55
Multiple Imputation
Combined Estimator
Total variability
56
MI???????????
?????????
Rubin Schenker (1986) JASA
57
????????????
58
MI?????????
  • ????????????????????
  • ???????????????????????????
  • MI???????????????????
  • MI???????????
  • ?????????SE????
  • ???????????????????????????
Write a Comment
User Comments (0)
About PowerShow.com