Agent-Based Models within spatial information science - PowerPoint PPT Presentation

1 / 11
About This Presentation
Title:

Agent-Based Models within spatial information science

Description:

Agent-Based Models within spatial information science possible applications and methods Charlotte Bruun – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 12
Provided by: Charlo206
Category:

less

Transcript and Presenter's Notes

Title: Agent-Based Models within spatial information science


1
Agent-Based Models within spatial information
science possible applications and methods
  • Charlotte Bruun

2
Object-oriented programming
  • Et objekt er en software enhed der rummer
    attributter metoder
  • Objekter "kommunikerer med hinanden gn. metoder
  • Agent-baseret modellering hænger uløseligt sammen
    med objekt-orienteret programmering
  • Distributed software crises
  • Computing hardware and networks get smaller,
    faster and cheaper, yet distributed software gets
    larger, slower and more expensive to develop!
    (fayad og Schmidt)
  • Genbrug af kode OG design (gn. Frameworks)

3
Terminologi
  • Class definitionen af et objekt
  • Superclass class som et objekt arver adfærd og
    variable fra
  • Subclass en class som arver adfærd og variable
    fra superclass
  • Instance et objekt er et instance af en class som
    er blevet skabt i hukommelsen
  • Instance variable en variable som er tilgængelig
    for alle funktioner i et objekt
  • Method en funktion kaldes gennem objektet
  • Attributes data variable

4
3 hovedprincipper
  • Encapsulation
  • Objekter gemmer deres funktioner (methods) og
    data. Begrænset brug af globale variable. Gør det
    lettere at udskifte dele, og teste enkeltdele.
    Begrænser utilsigtede ændringer af variable.
  • Inheritance
  • Hver subclass arver alle variable og metoder fra
    sin superclass.
  • Polimorphism
  • Multiple instances af samme class. Kopierne deler
    adfærd, men ikke state eller hukommelse.

5
Frameworks
  • Beskriver arkitekturen af et objektorienteret
    system. Typer af objekter og hvordan de
    interagerer
  • Fokuserer pÃ¥ design genbrug (modsat class library
    m. componenter.
  • Et framework er et skelet som tilpasses
  • Abstrakt klasse er en superclass m. virtuelle
    (tomme) metoder. Bruges til udformning af
    subclasses IKKE instances. (huskeseddel!)
  • Genbrugsdesignet er et set af abstrakte klasser
    metoder til interaktion af instances (virtuelle).

6
adfærdsbeskrivelser
  • Fra dumme til superintelligente agenter afhængig
    af konteksten.
  • Typisk agenter der i en eller anden forstand
    lærer.
  • Agenter typisk begrænset i tid og rum - ogsÃ¥ hvad
    angår informationer
  • Goals?? Hvad er formÃ¥let med adfærden?
  • Metoder til adfærdsbeskrivelse
  • Genetiske algoritmer
  • Neurale netværk
  • If then beslutnings regler

7
Genetiske algoritmer
  • Randomly generate initial population M(0)
  • Compute and save the fittness u(m) for each
    individual m in M(t)
  • Fitness function!!!
  • Define selection probabilities p(m) for each
    individual so that p(m) is proportional to u(m)
  • Generate M(t1) by probabilistically selecting
    individuals from M(t) to produce offspring via
    genetic operators
  • Crossover (recombination)
  • mutation
  • Repeat step 2 until satisfying result is obtained

8
An agent-based architecture for the simulation of
social reality in a cadastre - S. Bittner
  • Environment
  • Agents, land, system of documentation (cadastral
    system)
  • Agent
  • Inbox - messages sent to the agent
  • Internal state - goals (duty objective) and
    beliefs
  • Outbox - messages sent by the agent
  • Decision rules
  • Update internal state based on inbox
  • Decide on actions to perform (duty (tax)
    objective (buy/sell))
  • Update beliefs based on outbox
  • Send outbox content to inbox of reciver

9
ABLOoM Location behaviour, spatial patterns, and
agent-based modelling - Otter, Veen og Vriend
  • Environment
  • Land use layer (land, natural area, sea), fixed
  • Attraction layer (agglomeration effects),
    non-fixed
  • Different for each type of agent
  • Agents households and firms
  • Households have Preference for employment,
    neighbours service levels and environment.
  • Firms industry, manufacturing, service -gt
    requirement for inputs
  • Rules
  • Agents search the grid for optimal location
    (local or global)

10
  • Example of houshold rules (low-income)
  • Search for location with higest attraction
  • Set this value as target attraction
  • Search for employment opportunities
  • Choose location with target attraction closest to
    employment
  • If chosen location is vacant, move there - else
    nearest vacant
  • Update attraction of chosen location
  • Example of firm rules (heavy industry - natural
    ressource)
  • Search for location nearest to nature
  • If more locations - choose randomly (OBS!
    RANDOM)
  • If chosen location is vacant, move there - else
    nearest vacant
  • Update attraction of chosen location

11
Litteratur
  • Bittner, Steffen (2001), An agent-based
    architecture for the simulation of social reality
    in a cadastra, 4th AGILE conference.
  • Otter, H.S, A. van der Veen and H.J. de Vriend
    (2001), ABLOoM location behaviour, spatial
    patterns and agent-based modelling, JASS vol.4
    no.4
  • Teran, O, J. Alvaraz, M. Ablan and M. Jaimes
    (2007), characterising emergence of landowners in
    a forest reserve, JASSS vol. 10 no.3
  • Dibble, C. and P.G.Feldman (2004), The geoGraph
    3D computational laboratory network and terrain
    landscapes for RePast, JASSS vol 7 no.1
  • The spatial dimension and social simulations a
    review of three books, JASSS vol. 9 no. 4
  • Hodgson, G. and T. Knudsen (forthcoming), The
    emergence of proporty rights enforcement in early
    trade a behavioural model without reputational
    effects, Journal of economic behavior and
    organization.
  • Obs JASS Journal of artificial societies and
    social simulation http//jasss.soc.surrey.ac.uk
Write a Comment
User Comments (0)
About PowerShow.com