Title: Gleissberg Solar Cycle: Pacemaker
1Gleissberg Solar Cycle Pacemaker of the Pacific
Decadal Oscillation?
R. Tim Patterson Andreas Prokoph (Carleton
University) Graeme Swindles (Bradford
University) Helen Roe (Queens University of
Belfast) Arun Kumar (King Fahd University of
Petroleum Minerals)
2NE Pacific Climate and OceanographicResearch
Canadian Foundation For Climate and
Atmospheric Sciences (CFCAS)
3Effingham Inlet Vancouver Island
4Conductivity Temperature Depth (CTD) Rosette
Effingham Inlet
Patterson et al. 2000. J. Foram. Res., 30
321-335
5NE PacificClimate and OceanographyMost
influenced by Aleutian Low North Pacific High
Ware Thomson, 2000, J. Climate, 13 3209-3220.
6NE Pacific Climate and Oceanography
Jet Stream is planetary wave which influences
AL and NPH
Ware Thomson, 2000, J. Climate, 13 3209-3220.
7Effingham Inlet Annually deposited laminations
linked to changing climate conditions.
Chang et al. 2003. Palaios, 18 477-494
8Effingham Inlet Climate Record Piston Core
TUL99B03
Correlation With Many Different Solar Cycles
- 11 yr Schwabe Cycle
- 75-90 yr Gleissberg Cycle
- 200-500 yr Suess Cycle
- 1100-1500 yr Bond Cycle
Sediment Gray-Scale Values Morlet Wavelet
Analysis (TUL99B03)
75-90 yr Gleissberg solar cycle fades in and out.
Patterson et al. 2004. Sedimentary Geology, 172
67-84.
9Effingham Inlet Northern Anchovy - Pacific
Herring Population Trends Cycles
3,500 yBP phase/ frequency shift evident in both
herring and anchovy data Well-documented
Gleissberg Cycle ( 75-90 yrs) occurs frequently
for long periods of time.
3500 yBP
Piston Core TUL99B03
Patterson et al. 2004 Palaeontologia Electronica
7, 22 p. Patterson et al. 2005 Marine
Micropaleontology 55 183-204
10Effingham Inlet High Resolution Climate Record
High Sun Activity
106valves/gm
AL Dominated (Low Sun)
Total Diatoms
3550 yBP
Low Sun Activity
Diatom Rich Laminae Thickness
62 year annual climate record from 4400 y BP.
Significant climate variation over short
Interval.
Depth in Core (cm)
Resting Spores
Terriginous Laminae Thickness
NPH Dominated (High Sun)
LaminaeThickness (mm)
Chang and Patterson, 2005, Palaeogeography,
Palaeoclimatology, Palaeoecology, 226 72-92.
11A Celestial Climate Driver
Sunspot Cycle
Solar Energy Flux
Galactic Cosmic Rays
Cloud Formation
Atmospheric Water Cycle (Clouds)
Shaviv Veizer 2003. GSA Today 134-9 Veizer, J.
2005 Geoscience Canada, 32 13-30 Svensmark et
al. 2006 Proc. Royal Soc. Ser. A.
12Additional Solar Climate Effects
Ultraviolet Radiation
Ozone Layer
Hameed Lee 2005 GRL 32, L23817
13Additional Solar Climate Effects
Ultraviolet Radiation
Ozone Layer
Hameed Lee 2005 GRL 32, L23817
14Additional Solar Climate Effects
Ultraviolet Radiation
- 0.4 increase in solar shortwave UV
radiation under solar maximum conditions. - Influences
- Ozone concentration
-
- Radiative heating
- Zonal circulation
Ozone Layer
Hameed Lee 2005 GRL 32, L23817
15Additional Solar Climate Effects
Tropopause
Increased rate of penetration of jet stream
from stratosphere to troposphere under solar
maximum conditions.
Polar Jet Stream
Subtropical Jet Stream
Polar Jet Stream
Subtropical Jet Stream
Hameed Lee 2005 GRL 32, L23817
16Meanwhile, Back in the NE Pacific
Polar Jet
AL
NPH
AL
Subtropical Jet
Hameed Lee 2003 AGU 84, SH11E-03 Christoforou
Hameed 1997 GRL 24, 293-296.
17Meanwhile, Back in the NE Pacific
Correlation between sunspot cycle and location of
Aleutian Low (AL) and North Pacific High (NPH)
AL migrates eastward during solar minimum NPH
migrates southward during solar minimum
AL
NPH
Hameed Lee 2003 AGU 84, SH11E-03 Christoforou
Hameed 1997 GRL 24, 293-296.
18Effingham Climate Diatom Production
Teleconnection
Sunspot Cycle Celestial / Solar Modulation
Hameed Lee 2003 AGU 84, SH11E-03
19Pacific Decadal Oscillation (PDO)
PDO is long-lived El Niño-like pattern of Pacific
climate variability. PDO most visible in North
Pacific/North American sector, while secondary
signatures exist in tropics
- opposite true for ENSO. PDO fluctuations
most energetic in two general periodicities
- 15-to-25 years
- - 50-to-70 years.
http//ingrid.ldeo.columbia.edu/28/home/alexeyk/m
ydata/TSsvd.in29readfile/.SST/.PDO/
20Pacific Decadal Oscillation (PDO) Index
PDO Index defined as North Pacific monthly sea
surface temperature variability poleward of 20N
for 1900-93 period.
Two full PDO cycles in 20th century Cool" PDO
regimes prevailed from 1890-1924 and from
1947-1976 Warm" PDO regimes dominated from
1925-1946 and from 1977 through mid-1990's.
http//ingrid.ldeo.columbia.edu/28/home/alexeyk/m
ydata/TSsvd.in29readfile/.SST/.PDO/
21Effingham Inlet Core MD02-2494 - Opal
20
33
50
Years
70
90
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
20
33
Years
50
70
90
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
Years Before Present
Ivanochko et al. 2008 CJEX 45 1317-1329.
22NOAA/NESDIS SST 50 KM
NE Pacific November 2008 Sea Surface
Temperatures (SST)
Winter SST in coastal BC ranges from 4-11.4C
along a N-S gradient.
http//www.nesdis.noaa.gov/
23Dinoflagellate-Cyst Winter Sea Surface
Temperature (SST) Transfer Function
TUL99B03
TUL99B11
10 µm
Radi de Vernal 2004 Palaeobotany and Palynology
128 169-193
24Dinoflagellate-Cyst Winter Sea Surface
Temperature (SST) Transfer Function
10 µm
TUL99B03
TUL99B11
Radi et al. 2007 Marine Micropaleontology 62
269-297
25Dinoflagellate Cyst-Based Winter Sea Surface
Temperature (SST) Reconstruction
10 µm
TUL99B03
Temperature C
Temperature C
TUL99B11
Patterson et al. (unpublished data).
26Middle Holocene
TUL99B03
- NPH Dominant
- Strong upwelling
- Warm / Dry
- PDO negative
NPH
AL
TUL99B11
Transition to Late Holocene ca 3550 yBP
TUL99B03
Temperature C
TUL99B11
TUL99B03
Warm / Dry
Patterson et al. 2004. Sedimentary Geology, 172
67-84.
27Late Holocene
- Aleutian Low Dominant
- Weaker upwelling
- Neoglacial Advances
BC Glaciers
Global Glacial Advances
TUL99B11
Transition to Late Holocene ca 3550 yBP
TUL99B03
Temperature C
TUL99B11
TUL99B03
Cold Episodes
Warm / Dry
Moist / Cool
28Late Holocene
- California Current Weakened
- Central Gyre Migrated shoreward
- Higher SSTs
- More El Niño-like PDO
BC Glaciers
Global Glacial Advances
TUL99B11
Transition to Late Holocene ca 3550 yBP
TUL99B03
Temperature C
TUL99B11
TUL99B03
Cold Episodes
Warm / Dry
Moist / Cool
29MD02-2494
180-250
TUL99B11
Transition to Late Holocene ca 3550 yBP
TUL99B03
Temperature C
TUL99B11
TUL99B03
Cold Episodes
Warm / Dry
Moist / Cool
Ivanochko et al. 2008 CJEX 45 1317-1329.
30TUL99B11
Medieval Warm Period ca 1100 yBP (AD 900)
TUL99B03
Temperature C
TUL99B11
TUL99B03
Cold Episodes
Warm / Dry
Moist / Cool
31- SSTs declined through MWP
- Higher Productivity
- Weaker Gleissberg / PDO
- NPH Stronger
- Stronger California Current
- Warmer Dryer
NPH
Medieval Warm Period
AL
Transition to Late Holocene ca 3550 yBP
Temperature C
TUL99B11
TUL99B03
TUL99B11
Warm / Dry
Moist / Cool
TUL99B03
AD 900
AD 1300
32- Medieval Warm Period corresponds to
- interval of Mega-drought in western
- North America.
- Prolonged and pronounced
- negative PDO
-
Medieval Warm Period
Transition to Late Holocene ca 3550 yBP
Temperature C
TUL99B11
TUL99B03
Cold Episodes
TUL99B11
Warm / Dry
Moist / Cool
TUL99B03
AD 900
AD 1300
331034
1253
- During Little Ice Age SSTs flattened
- remained cool.
- Generally Positive PDOs in NE Pacific
- Less arid terrestrial conditions
-
1150
Less Arid LIA
936
Drought Area
Dryer
1829
1613
1321
1915
Wetter
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
Year
Little Ice Age
Transition to Late Holocene ca 3550 yBP
TUL99B11
TUL99B03
Temperature C
TUL99B11
TUL99B03
Cold Episodes
Warm / Dry
Moist / Cool
AD 1300
AD 1870
34MD02-2494
180-250
Year
Little Ice Age
Transition to Late Holocene ca 3550 yBP
TUL99B11
TUL99B03
Temperature C
TUL99B11
TUL99B03
Cold Episodes
Warm / Dry
Moist / Cool
AD 1300
AD 1900
Ivanochko et al. 2008 CJEX 45 1317-1329.
351034
1253
Post LIA
1150
936
- Post LIA increase in SSTs
- Generally Positive PDOs in NE Pacific
- Increased arid terrestrial conditions
-
Drought Area
Dryer
1829
1613
1321
1915
Wetter
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
Year
Post LIA
Transition to Late Holocene ca 3550 yBP
TUL99B11
TUL99B03
Temperature C
TUL99B11
TUL99B03
Cold Episodes
Warm / Dry
Moist / Cool
AD 1900
Cooke et al. 2008 Science 306 1015-1018
36- Post LIA increase in SSTs
- Generally Positive PDOs in NE Pacific
- Increased arid terrestrial conditions
-
Post LIA
Transition to Late Holocene ca 3550 yBP
TUL99B11
TUL99B03
Temperature C
TUL99B11
TUL99B03
Cold Episodes
Warm / Dry
Moist / Cool
AD 1900
http//ingrid.ldeo.columbia.edu/28/home/alexeyk/m
ydata/TSsvd.in29readfile/.SST/.PDO/
37PDO Gleissberg Cycles in Reconstruction of
Summer Rainfall (Drought/Flood) in Eastern China
PDO persistent feature composed of phase-locked
oscillations. Gleissberg Solar Cycle
controls Major rhythm of PDO during Little Ice
Age.
Shen et al. 2006 Geophys. Res. Lett. 33 L03702,
doi10.1029/2005GL024804
38Conclusions
- Winter SST variation in Effingham Inlet enhances
knowledge of relationship between NE Pacific
Paleoceanography and terrestrial climate history. - High productivity marine regimes and terrestrial
drought intervals characterized by 200 year de
Vries / Seuss-type cycles - 90 year Gleissberg cycles dominate significant
part of record. PDOs of varying intensity are
robust features during these intervals. -
- When Gleissberg cycles are absent or weak
PDO-like signals are highly irregular or absent. - Results consistent with hypothesis that PDO
periodicity is non-linear response to rhythm of
Gleissberg pacemaker.