Newton - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Newton

Description:

Newton s Laws of Motion Applicable to Angular Motion Dr. Ajay Kumar Professor School of Physical Education DAVV Indore Newton's Laws and Angular Motion With slight ... – PowerPoint PPT presentation

Number of Views:80
Avg rating:3.0/5.0
Slides: 18
Provided by: HP86
Category:
Tags: laws | newton | newtons

less

Transcript and Presenter's Notes

Title: Newton


1
Newtons Laws of Motion Applicable to Angular
Motion
  • Dr. Ajay Kumar
  • Professor
  • School of Physical Education
  • DAVV Indore

2
Newton's Laws and Angular Motion
  • With slight modification, Newton's laws of linear
    motion can  be applied to angular motion.
  • An eccentric force will result in rotation,
    provided the body is freely moving.
  • Eccentric force A force which is applied off
    center. In other words, the direction of the
    force is not in line with the objects center of
    gravity. 

3
  • External forces applied to the human body are
    typically eccentric.
  • Rotatory motion of a lever usually results when
    muscle pulls on bone, providing the external
    resistance is less than the amount of muscular
    force acting on the bone.

4
  • When observing segmental motion of the human
    body, muscle force is considered an external
    force. 
  • If you consider  the entire body undergoing
    general motion, muscle forces would be considered
    an internal force.

5
First Law
  • 1st Law A body continues in a state of rest or
    uniform  rotation about its axis unless acted 
    upon by an external torque.

6
  • Angular Inertia (I Moment of inertia) is the
    sum of all the masses (m) multiplied by the
    radius squared (r2).            
  • I     (m)(r2)
  • If the mass is concentrated farther away from the
    axis  of rotation, the moment of inertia will  be
    greater, thus the system (i.e., lever)  will be
    harder to start or stop.

7
  • The greater the moment of inertia, the more
    difficult it is for an external torque to change
    the state of rest or uniform motion of a rotating
    body.
  • In regards to the human body, the mass
    distribution about an axis of rotation (i.e.,
    joint) may be altered by changing the limb
    position (i.e., bringing the limb in closer to
    the axis of rotation by flexing at a joint). 

8
  • As a human locomotors, angular inertia (moment of
    inertia) varies. 
  • For example,  a jogger is able to recover the leg
    faster by tucking the foot close to the
    buttocks. 
  • The jogger has concentrated the mass of the leg
    closer to the axis of rotation (hip joint) which
    decreases the moment of inertia and therefore
    increases the rate at which the leg is recovered.

9
Second Law
  • 2nd Law The acceleration of a rotating body is
    directly  proportional to the torque causing it,
    is in the  same direction of the torque and is
    inversely proportional to the moment of inertia.
  • Angular acceleration is the torque divided by 
    the moment of inertia.
  • Angular acceleration is also the change in 
    angular velocity divided by time.

10
  • Angular momentum is the force needed to start or
    stop rotational motion.
  • Angular momentum is the product of angular 
    velocity and moment of inertia.
  • The greater the angular momentum, the greater the
    force needed to stop the motion.

11
  • Using a heavier bat will result in a greater
    angular momentum provided that angular velocity
    is maintained. 
  • Also, increasing the angular velocity of a bat
    will increase the angular momentum. 
  • Angular momentum of a limb is increased if the
    angular velocity is increased (i.e., kicking a
    ball).

12
Law of Conservation of Angular Momentum
  • Newtons first law can be related to angular
    momentum. 
  • The angular momentum associated with a  rotating
    body remains constant unless influenced by
    external torques. 
  • Divers, dancers,  figure skaters make use of this
    law. 
  •  

13
  • For example, a diver will change from a lay out
    position to a tucked position in order to
    increase angular rotation (angular velocity). 
  • The tuck position results in a reduced moment of
    inertia. since angular momentum is conserved,
    angular velocity must increase

14
Third Law
  • 3rd Law    When a torque is applied by one body
    to another, the  second body will  exert an equal
    and opposite torque  on the other body.
  • Body movements which serve to  regain balance are
    explained by Newtons third law. 
  • This is evident in gymnasts. If a gymnast lowers
    the left arm downward,  the right arm will react
    move upward (actually moving opposite the left
    arm) to maintain balance and therefore prevent
    falling from the balance beam. 

15
  • Going from a tight tuck to a lay out position,
    the diver rotates the trunk back (extends the
    trunk). The reaction is for the lower extremities
    to rotate the opposite direction (extention at
    the hips).

16
Transfer of momentum
  • Angular momentum can be transferred from one body
    segment to the next. 
  • Since body segments differ in mass, the moment of
    inertia of each body will vary. 
  • Considering that momentum is conserved, a
    reduction in the moment of inertia of a body part
    will result in an increased angular velocity. 

17
  • The latter can be applied to throwing and kicking
    movements. For example, throwing involves a
    series of angular rotations of progressively
    lighter body segments (leg/trunk--arm).
  • A reduction in moment of inertia between the
    leg/trunk complex and the lighter arm, results in
    an increased velocity of the arm.
Write a Comment
User Comments (0)
About PowerShow.com