DC Motor Driving an Inertial Load - PowerPoint PPT Presentation

About This Presentation
Title:

DC Motor Driving an Inertial Load

Description:

DC Motor Driving an Inertial Load – PowerPoint PPT presentation

Number of Views:193
Avg rating:3.0/5.0
Slides: 34
Provided by: Brie98
Category:

less

Transcript and Presenter's Notes

Title: DC Motor Driving an Inertial Load


1
DC Motor Driving an Inertial Load
2
  • w(t) angular rate of the load, output
  • vapp(t) applied voltage, the input
  • i(t) armature current
  • vemf(t) back emf voltage generated by the motor
    rotation
  • vemf(t) constant motor velocity
  • t(t) mechanical torque generated by the motor
  • t(t) constant armature current

3
(No Transcript)
4
State Space model
5
Matlab
R 2.0 Ohms L 0.5 Henrys Km .015
torque constant Kb .015 emf constant Kf
0.2 Nms J 0.02 kg.m2 A -R/L -Kb/L
Km/J -Kf/J B 1/L 0 C 0 1 D
0 sys_dc ss(A,B,C,D)
6
Matlab output
a x1 x2
x1 -4 -0.03 x2
0.75 -10 b u1
x1 2 x2 0 c
x1 x2 y1
0 1 d u1
y1 0
7
SS to TF or ZPK representation
gtgt sys_tf tf(sys_dc) Transfer function
1.5 ------------------------ s2 14 s
40.02 gtgt sys_zpk zpk(sys_dc) Zero/pole/gain
1.5 ------------------------- (s4.004)
(s9.996)
8
  • Note The state-space representation is best
    suited for numerical computations. For highest
    accuracy, convert to state space prior to
    combining models and avoid the transfer function
    and zero/pole/gain representations, except for
    model specification and inspection.

9
4 ways to enter system model
sys tf(num,den) Transfer function sys
zpk(z,p,k) Zero/pole/gain sys ss(a,b,c,d)
State-space sys frd(response,frequencies)
Frequency response data s tf('s') sys_tf
1.5/(s214s40.02) Transfer function
1.5 ------------------------ s2 14 s
40.02 sys_tf tf(1.5,1 14 40.02)
10
4 ways to enter system model
sys_zpk zpk(,-9.996 -4.004,
1.5) Zero/pole/gain
1.5 ------------------------- (s9.996) (s4.004)
11
Liquid Level System
  • Qi input flow rate
  • Qo output flow rate
  • H liquid level in tank
  • A cross section of tank
  • V volume of liquid in tank
  • V AH

12
  • Conservation of matter
  • Qo is dependent on the head H
  • const. coeff.

13
  • ?
  • This is nonlinear.
  • To find eq. points, set derivative0
  • ?
  • To linearize let
  • where

14
  • Substitute into eq on top
  • use

0
15
  • Output flow
  • The quantity R is the called the
    resistance of the valve and A is also denoted as
    C is called the capacitance of the tank.
  • Then
  • Note

16
Two tank system
17
In eq pt all flowsame
1
3
2
4
18
  • Exercise
  • 1)get component block diag form 3, 4
  • 2)put all four pieces to form block diag.
  • 3)get T.F. from qi to q2

19
Note ip10, ?vp1vovA vBvp20 Let vC1 vC2
be s.v., vo output.
20
KCL at A
vo is not s.v. nor input, use vovC2
21
KCL at B
0
vo1 not s.v. nor input,
vo1vAvC1vn1vC1 vp1vC1vovC1
vC2vC1
22
Output eq
23
Modeling
  • Types of systems electric
  • mechanical

  • electromechanical
  • Types of models I/O o.d.e. models
  • state space models

24
  • I/O o.d.e. model a d.e. involving input/output
    only.
  • linear
  • where u input
  • y output

25
  • State space model
  • linear
  • or in some text
  • where u input
  • y output
  • x state vector
  • A,B,C,D, or F,G,H,J are const matrices

26
  • Other types of models
  • Transfer function model (This is I/O model) from
    I/O o.d.e. model, take Laplace transform

27
  • Then I/O model in L.T. domain becomes
  • This is the T.F. model of the system.
  • ?T.F.
  • or
  • i.e. output L.T. is eq. to input L.T. with gain
    H(s)

denote
28
  • State space model to T.F. / block diagram
  • s.s.
  • Take L.T.
  • From sX(s)-AX(s)BU(s)
  • sIX(s)-AX(s)BU(s)
  • (sI-A)X(s)BU(s)
  • X(s)(sI-A)-1BU(s)

1
2
1
29
  • into Y(s)C(sI-A)-1BU(s)DU(s)
  • Y(s)C(sI-A)-1BD U(s)
  • H(s) DC(sI-A)-1B
  • is the T.F. from u to y
  • from

2
1
30
Example
31
(No Transcript)
32
  • In Matlab
  • gtgt A0 1-2 -3
  • gtgt B01
  • gtgt C1 3
  • gtgt D0
  • gtgt n,dss2tf(A,B,C,D)
  • n
  • 0 3.0000 1.0000
  • d
  • 1 3 2

33
  • gtgt n1 2 3d1 4 5 6
  • gtgt A,B,C,Dtf2ss(n,d)
  • A
  • -4 -5 -6
  • 1 0 0
  • 0 1 0
  • B
  • 1
  • 0
  • 0
  • C
  • 1 2 3
  • D
  • 0
Write a Comment
User Comments (0)
About PowerShow.com