Physical Laws for Mechanical - PowerPoint PPT Presentation

About This Presentation
Title:

Physical Laws for Mechanical

Description:

Title: Elements of Feedback Control Subject: Weapons Author: Brien W. Dickson Description: 1 Hour Last modified by: Degang J. Chen Created Date: 6/4/1997 12:49:12 PM – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 38
Provided by: Brie69
Category:

less

Transcript and Presenter's Notes

Title: Physical Laws for Mechanical


1
Physical Laws for Mechanical
2
Example car suspension
3
Car suspension simplified
  • Ignore tire deformation.
  • Suppose y1(t) is measured
  • from equilibrium position
  • when gravity has set in.
  • So gravity is canceled by
  • spring force at eq. pos.
  • ?There are two forces on m

y1(t)
x(t)
4
  • Newtons Law
  • or
  • num
  • den
  • T.F.H(s)
  • or

5
State Space Model
  • For linear motion
  • Define two state variables for each mass
  • x1position, x2 velocity x1-dot x2
  • x2-dot is acc and solve for it from Newtons
  • For angular motion
  • Define two state variables for each rotating
    inertia
  • x1 angle, x2 angular velocity x1-dot x2
  • x2-dot is angular acc and solve for it from
    Eulers law

6
Quarter car suspension
7
u
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
Electromechanical systems
  • Motors
  • DC motors
  • Induction motors
  • Variable reluctance motors
  • Generators
  • Angular position sensors
  • Encoders
  • Tachometers

13
(No Transcript)
14
For field control with constant armature current
For armature control with constant field current
15
Armature controlled motor in feedback
16
Get TF from wd to w and Td to w.
17
DC Motor Driving an Inertial Load
18
  • w(t) angular rate of the load, output
  • vapp(t) applied voltage, the input
  • i(t) armature current
  • vemf(t) back emf voltage generated by the motor
    rotation
  • vemf(t) constant motor velocity
  • t(t) mechanical torque generated by the motor
  • t(t) constant armature current

19
(No Transcript)
20
State Space model
21
Matlab
R 2.0 Ohms L 0.5 Henrys Km .015
torque constant Kb .015 emf constant Kf
0.2 Nms J 0.02 kg.m2 A -R/L -Kb/L
Km/J -Kf/J B 1/L 0 C 0 1 D
0 sys_dc ss(A,B,C,D)
22
Matlab output
a x1 x2
x1 -4 -0.03 x2
0.75 -10 b u1
x1 2 x2 0 c
x1 x2 y1
0 1 d u1
y1 0
23
SS to TF or ZPK representation
gtgt sys_tf tf(sys_dc) Transfer function
1.5 ------------------------ s2 14 s
40.02 gtgt sys_zpk zpk(sys_dc) Zero/pole/gain
1.5 ------------------------- (s4.004)
(s9.996)
24
  • Note The state-space representation is best
    suited for numerical computations. For highest
    accuracy, convert to state space prior to
    combining models and avoid the transfer function
    and zero/pole/gain representations, except for
    model specification and inspection.

25
4 ways to enter system model
sys tf(num,den) Transfer function sys
zpk(z,p,k) Zero/pole/gain sys ss(a,b,c,d)
State-space sys frd(response,frequencies)
Frequency response data s tf('s') sys_tf
1.5/(s214s40.02) Transfer function
1.5 ------------------------ s2 14 s
40.02 sys_tf tf(1.5,1 14 40.02)
26
4 ways to enter system model
sys_zpk zpk(,-9.996 -4.004,
1.5) Zero/pole/gain
1.5 ------------------------- (s9.996) (s4.004)
27
Modeling
  • Types of systems electric
  • mechanical

  • electromechanical
  • fluid systems
  • thermal systems
  • Types of models I/O o.d.e. models
  • Transfer Function
  • state space models

28
  • I/O o.d.e. model o.d.e. involving input/output
    only.
  • linear
  • where u input
  • y output

29
  • State space model
  • linear
  • or in some text
  • where u input
  • y output
  • x state vector
  • A,B,C,D, or F,G,H,J are const matrices

30
  • Other types of models
  • Transfer function model (This is I/O model) from
    I/O o.d.e. model, take Laplace transform

31
  • Then I/O ODE model in L.T. domain becomes
  • or

denote
32
ODE or TF to SS
33
  • State space model to T.F. / block diagram
  • s.s.
  • Take L.T.
  • From sX(s)-AX(s)BU(s)
  • sIX(s)-AX(s)BU(s)
  • (sI-A)X(s)BU(s)
  • X(s)(sI-A)-1BU(s)

1
2
1
34
  • into Y(s)C(sI-A)-1BU(s)DU(s)
  • Y(s)C(sI-A)-1BD U(s)
  • H(s) DC(sI-A)-1B
  • is the T.F. from u to y
  • from

2
1
35
Example
36
(No Transcript)
37
gtgt n1 2 3d1 4 5 6 gtgt A,B,C,Dtf2ss(n,d)
A -4 -5 -6 1 0 0 0
1 0 B 1 0 0 C 1
2 3 D 0 gtgt tf(n,d) Transfer
function s2 2 s 3 ---------------------
s3 4 s2 5 s 6
  • In Matlab
  • gtgt A0 1-2 -3
  • gtgt B01
  • gtgt C1 3
  • gtgt D0
  • gtgt n,dss2tf(A,B,C,D)
  • n
  • 0 3.0000 1.0000
  • d
  • 1 3 2
Write a Comment
User Comments (0)
About PowerShow.com