Abstract Syntax - PowerPoint PPT Presentation

About This Presentation
Title:

Abstract Syntax

Description:

Abstract Syntax Language of l-expressions ::= | (lambda ( )) | ( ) E.g., concrete syntax Scheme S ... – PowerPoint PPT presentation

Number of Views:134
Avg rating:3.0/5.0
Slides: 18
Provided by: wrightEdu
Learn more at: http://cecs.wright.edu
Category:

less

Transcript and Presenter's Notes

Title: Abstract Syntax


1
Abstract Syntax
2
Language of l-expressions
  • ltexpgt ltidentifiergt
  • (lambda ( ltidentifiergt )ltexpgt)
  • (ltexpgt ltexpgt)
  • E.g., concrete syntax Scheme S-expressions
  • ( lambda (x) ( f ( f x ) ) )

3
Abstract Syntax (vs Concrete Syntax)
lambda-exp
id
body
app-exp
rand
rator
var-exp
app-exp
rand
rator
id
var-exp
var-exp
id
id
4
Overview
Parse-expression
Concrete Syntax
Abstract Syntax
Unparse-expression
Interpreter
Results
5
Representing Abstract Syntax with Records
  • (define-datatype expression expression?
  • (var-exp
  • (id symbol?))
  • (lambda-exp
  • (id symbol?)
  • (body expression?))
  • (app-exp
  • (rator expression?)
  • (rand expression?)))

6
Parse Concrete to Abstract Syntax
  • (define parse-expression
  • (lambda (datum)
  • (cond
  • ((symbol? datum) (var-exp datum))
  • ((pair? datum)
  • (if (eqv? (car datum) 'lambda)
  • (lambda-exp (caadr datum)
  • (parse-expression (caddr datum)))
  • (app-exp
  • (parse-expression (car datum))
  • (parse-expression (cadr datum)))
  • )
  • )
  • (else (eoplerror 'parse-expression
  • "Invalid concrete syntax s"
    datum))
  • )))

7
Example (Petite Scheme)
  • gt (current-directory
  • I\\tkprasad\\cs784\\EOPL-CODE\\interps")
  • gt (load "chez-init.scm")
  • gt (load "2-2-2.scm")
  • gt (parse-expression 'x)
  • (var-exp x)
  • gt (parse-expression '(lambda (x) (f x)))
  • (lambda-exp x (app-exp (var-exp f) (var-exp x)))
  • gt (parse-expression 45)
  • Error reported by parse-expression
  • Invalid concrete syntax 45
  • debuggte
  • gt(unparse-expression
  • '(lambda-exp x (app-exp
  • (var-exp f) (var-exp x))))
  • (lambda (x) (f x))

8
Example (PLT Scheme)
9
Unparse Abstract to Concrete Syntax
  • (define unparse-expression
  • (lambda (exp)
  • (cases expression exp
  • (var-exp (id) id)
  • (lambda-exp (id body)
  • (list 'lambda (list id)
  • (unparse-expression body)) )
  • (app-exp (rator rand)
  • (list (unparse-expression rator)
  • (unparse-expression rand)) )
  • )))

10
Role of Induction and Recursion
  • Define data structures (infinite values) by
    induction.
  • Seed elements.
  • Closure operations.
  • Define functions (operations) by recursion.
  • Boundary/Basis case.
  • Composite/Recursive case.
  • Prove properties using structural induction.
  • Basis case.
  • Inductive step.

11
Representing Environment
12
Alternative 1
  • (define empty-env
  • (lambda () '()))
  • (define extend-env
  • (lambda (syms vals env)
  • (cons (list syms vals) env) ))
  • (define apply-env
  • (lambda (env sym)
  • (if (null? env)
  • (eoplerror 'apply-env "No binding for s"
    sym)
  • (let ((syms (car (car env)))
  • (vals (cadr (car env)))
  • (env (cdr env)))
  • (let ((pos (rib-find-position sym syms)))
  • (if (number? pos)
  • (list-ref vals pos)
  • (apply-env env sym)))))
  • ))

13
Alternative 2
  • (define empty-env
  • (lambda ()
  • (lambda (sym)
  • (eoplerror 'apply-env "No binding for s"
    sym)) )
  • )
  • (define extend-env
  • (lambda (syms vals env)
  • (lambda (sym)
  • (let ((pos (list-find-position sym syms)))
  • (if (number? pos)
  • (list-ref vals pos)
  • (apply-env env sym)))) )
  • )
  • (define apply-env
  • (lambda (env sym)
  • (env sym) )
  • )

14
Alternative 3
  • (define-datatype environment environment?
  • (empty-env-record)
  • (extended-env-record
  • (syms (list-of symbol?))
  • (vals (list-of scheme-value?))
  • (env environment?)))
  • (define scheme-value? (lambda (v) t))

15
(contd)
  • (define empty-env
  • (lambda ()
  • (empty-env-record) ))
  • (define extend-env
  • (lambda (syms vals env)
  • (extended-env-record syms vals env)))
  • (define apply-env
  • (lambda (env sym)
  • (cases environment env
  • (empty-env-record ()
  • (eoplerror 'apply-env "No binding for
    s" sym))
  • (extended-env-record (syms vals env)
  • (let ((pos (list-find-position sym
    syms)))
  • (if (number? pos)
  • (list-ref vals pos)
  • (apply-env env sym)))) )
  • ))

16
Queue
  • (define reset (lambda (q) (vector-ref q 0)))
  • (define empty? (lambda (q) (vector-ref q 1)))
  • (define enqueue (lambda (q) (vector-ref q 2)))
  • (define dequeue (lambda (q) (vector-ref q 3)))
  • (define Q (create-queue))
  • ((enqueue Q) 55)
  • ((empty? Q))
  • ((dequeue Q))
  • ((empty? Q))
  • ((reset Q))
  • ((dequeue Q))

17
  • (define create-queue
  • (lambda ()
  • (let ((q-in '()) (q-out '()))
  • (letrec
  • ((reset-queue
  • (lambda ()
  • (set! q-in '()) (set! q-out '())) )
  • (empty-queue?
  • (lambda ()
  • (and (null? q-in) (null? q-out))) )
  • (enqueue
  • (lambda (x)
  • (set! q-in (cons x q-in))) )
  • (dequeue
  • (lambda ()
  • (if (empty-queue?)
  • (eoplerror 'dequeue "Not on an
    empty queue")
  • (begin
  • (if (null? q-out)
Write a Comment
User Comments (0)
About PowerShow.com