Title: Lecture 11. Hydrogen Atom
1Lecture 11. Hydrogen Atom
References
- Engel, Ch. 9
- Molecular Quantum Mechanics, Atkins Friedman
(4th ed. 2005), Ch.3 - Introductory Quantum Mechanics, R. L. Liboff
(4th ed, 2004), Ch.10 - A Brief Review of Elementary Quantum Chemistry
- http//vergil.chemistry.gatech.edu/notes/quantrev
/quantrev.html
2(2-Body Problem)
Electron coordinate
Nucleus coordinate
Separation of Internal Motion Born-Oppenheimer
Approximation
Full Schrödinger equation can be separated into
two equations 1. Atom as a whole through the
space 2. Motion of electron around the
nucleus. Electronic structure (1-Body
Problem) Forget about nucleus!
3in spherical coordinate
4Angular part (spherical harmonics)
Radial part (Radial equation)
principal quantum no.
, n-1
angular momentum quantum no.
(Laguerre polynom.)
magnetic quantum no.
5Radial Schrödinger Equation
6(No Transcript)
7Wave Functions (Atomic Orbitals) Electronic
States
8Wave Functions (Atomic Orbitals) Electronic
States
Designated by three quantum numbers
Radial Wave Functions Rnl
9(No Transcript)
10Radial Wave Functions Rnl
node
2 nodes
Bohr Radius
Reduced distance
Radial node (? 4, )
11Radial Wave Functions Rnl
12Radial Wave Functions (l 0, m 0) s Orbitals
13(No Transcript)
14Radial Wave Functions (l ? 0)
15Probability Density
16Probability
Wave Function
17Radial Distribution Function
Probability density. Probability of finding an
electron at a point (r,?,f)
Integral over ? and f
Radial distribution function. Probability of
finding an electron at any radius r
Wave Function
Radial Distribution Function
Bohr radius
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22p Orbitals (l 1) and d Orbitals (l 2)
p orbital for n 2, 3, 4, ( l 1 ml -1,
0, 1 )
d orbital for n 3, 4, 5, (l 2 ml -2,
-1, 0, 1, 2 )
23(No Transcript)
24Energy Levels (Bound States)
25Ionization Energy
Minimum energy required to remove an electron
from the ground state
Energy of H atom at ground state (n1)
?
Rydberg Constant
Ionization energy of H atom
26Three Quantum Numbers
- n Principal quantum number (n 1, 2, 3, )
- Determines the energies of the electron
Shells
l Angular momentum quantum number (l 0, 1, 2,
, n?1) Determines the angular momentum of the
electron
Subshells
m magnetic quantum number (m 0, ?1, ?2, , ?l)
Determines z-component of angular momentum of
the electron
27Shells and Subshells
Shell n 1 (K), 2 (L), 3 (M), 4(N),
Sub-shell (for each n) l 0 (s), 1 (p), 2
(d), 3(f), 4(g), , n?1 m 0, ?1, ?2, ,
?l Number of orbitals in the nth shell n2 (n2
fold degeneracy) Examples Number of subshells
(orbitals) n 1 l 0 ? only 1s (1) ?
1 n 2 l 0, 1 ? 2s (1) , 2p (3) ? 4
n 3 l 0, 1, 2 ? 3s (1), 3p (3), 3d
(5) ? 9
28Spectroscopic Transitions and Selection Rules
Transition (Change of State)
n1, l1,m1
n2, l2,m2
- All possible transitions are not permissible.
- Photon has intrinsic spin angular momentum s
1 - d orbital (l2) ? s orbital (l0) (X) forbidden
- (Photon cannot carry away enough angular
momentum.)
Selection rule for hydrogen atom
29Spectra of Hydrogen Atom (or Hydrogen-Like Atoms)
Balmer, Lyman and Paschen Series (J.
Rydberg) n1 1 (Lyman), 2 (Balmer), 3
(Paschen) n2 n11, n12, RH 109667 cm-1
(Rydberg constant)
Electric discharge is passed through gaseous
hydrogen. H2 molecules and H atoms emit lights of
discrete frequencies.
30(No Transcript)