Title: Chapter Three
1Chapter Three
- Introduction to Probability
2(No Transcript)
3????
??????????
- ??(Probability) ????????
- ??(Event)????????????????
- P(A)??????, ??A?????
- ???? ? ?? ? ??
- ?????????
- ?????A, 0 ?P(A) ?1
- P(Ã) 1 - P(A), ??P(Ã)?A??????
- ???A, B??, ? P(A?B) P(A) P(B), ?P(A?B) 0
4(No Transcript)
5???????
??????????
- ?P(A?B) P(A) P(B), ???A?B??
- P(A?B) P(A) P(B) - P(A ? B)
- ????
- ????
- (Bayesian)
- Examples
6Ex(1)????A?B?????A????300???, ?????0.3,
B????2000???, ????0.4, ?????????,????????????,????
?A????????? (2)?????A?B???????????C,
????l000???, ????0.1, ??A,B????, ???????????,
???A?????????
7(No Transcript)
8EX?????????????????????,??????????,????????? ??
?????0.7 ???????1.4 ??????13 ?????????0.8
??????????1.3 ??????????1.5 ???,???????llp
(1)???????????????????? (2)????????????,?????????
???????? (3)??????????????????????,???????
????????? (4)??????????????
9(No Transcript)
10Mean and Variance of a Continuous Random Variable
11??????????
??????????
- ?????(m ) ???????? E(X)
- ?????(s 2) ???????? V(X)
- Examples
12??????????
??????????
13????
??????????
- ?????
- ????
- ?????
- ?????
- ?????
- ????
- ????
- ????
14????(Binomial Distribution)
??????????
- ????
- n?????????, ????????
- ???????????(S)???(F)??
- ?????? P(S) p
- ?????? P(F) q
- ???? (x) n?????????
- ????
- m E(X) np
- V(X) npq
- Examples
15EX ??????????500?????,?????,????????l0???,
????????????, ????, ???????? (1)????????l0????,??
????????????? (2)??????????20?,??????????????
16?????
??????????
- ???? ??????, ???????????, ??????
- ???? (x) n?????????
- ????
- Examples
17(No Transcript)
18?????(Poisson)
??????????
- ????
- ???????, ???????????
- ???????????????? l
- ?????????????????????
- ?????????, ??????????????
- ???? (x) ?????????, ???????
- ????
- m E(X) l, V(X) l
- ??? XPoisson(l1), YPoisson(l2),
- ? XYPoisson(l1 l2)
- Examples
19????????????,???????,?????,?????,??????????. ????
??????,????????????????3????,????????,????????????
??????????????
20????(Normal)
??????????
- ????
- E(X) m, V(X) s 2
- P(m-sltXltms) 0.683
- P(m-2sltXltm2s) 0.954
- P(m-3sltXltm3s) 0.997
- ???
- ?????
- Examples
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26Standardization
27Standardization - Cont.
28? ??????????,??????8.8750.005?,
????????XN(8.873,0.0042),?? (1)??????????????? (
2)??????10?,??????????????? (3)??????yN(8.875,0.0
042),????????????????? (4)??????yN(8.875,0.0022),
?????????????????
29??????????15?0.3??,????,?????,????????N(14.9,0.04)
,???????N(14.?,0.01),?? (1)?????????????????? (2)
????????????????????? (3)????????????????????
30????(Exponential)
??????????
- ???????, ??????????????, ???????????????
- ???? (x) ?????????, ??????????
- ????
- m E(X) 1/l, V(X) 1/l2
- Lack of memory
- Examples
31??????????,????????,????10.3??,?? (1)??????????
(2)???????????????????????
32????(Weibull)
??????????
- ???? (t) ??
- ????
- m E(X) l, V(X) 1/l2
- Examples
33(No Transcript)
34EX You are conducting a reliability analysis for
a new product. Based on prior testing with a
similar product.you believe the weibull
failure-time distribution, with parameter?0.20
per year, applies. But you have no basis for
establishing b. Compute at a time span of 5
years (1) the failure rate (2)the survival
probability assuming that (a) b 0.5 (b) b
1.2, and (c) b 2.0.
35Normal Approximation to Binomial and Poisson
36Covariance and Correlation