Predicate abstraction for game semantics - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Predicate abstraction for game semantics

Description:

game-based model checking key game model properties: syntax-direct: behaviour of any component specified in isolation truly compositional: behaviour of component ... – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 28
Provided by: Santa179
Category:

less

Transcript and Presenter's Notes

Title: Predicate abstraction for game semantics


1
(No Transcript)
2
game-based model checking
  • key game model properties
  • syntax-direct behaviour of any component
    specified in isolation
  • truly compositional behaviour of component built
    from sub-models
  • any component can be verified in isolation
  • huge programs could be verified by isolating
    difficult parts

3
game-based p.a.
  • game models cannot avoid state explosion
  • - would benefit from predicate abstraction!
  • predicate abstraction most naturally treated as a
    model mutation
  • - would benefit from syntax-direct and
    compositional explanation

4
contributions
  • a game semantics of p.a.
  • a verification tool for a large subset of C
  • a predicate annotation approach that exploits the
    syntax-direct property
  • a CEGAR verification algorithm that exploits the
    syntax-direct property

5
programming language IAL
  • C-like control structure
  • if break continue goto assert
  • block structure state
  • nat x M N x M
  • expressions
  • x k M(N1,..,Nn) let f(x1,..,xn) M in N

6
battle of numbers
  • bool goer 0
  • nat pile 10 you()10 me()10
  • f (if pile gt 0
  • then goer 1 pile - you()9pile
  • if pile gt 0
  • then goer 0 pile - me()9pile)
  • if pile 0 then winner goer

7
wrestle of numbers
bool goer 0 nat pile nat n you()10
n10 9 n assert(pile9 0) f (if pile gt 0
then nat n you()9 goer
1 pile - n assert(pile9 9
- n) if pile gt 0
then pile - 9 n goer 0) assert(goer
0)
8
stateful game model no p.a.
  • model M v set of traces returning val v
  • distinguish ab/normally terminating traces
  • trace start state, moves, end state
  • state map ids in environment to vals
  • move val position (in typing)

9
stateful game models
you() m qyou,myou
(for all m)
you()9 d Sm9d qyou,myou
10
p.a. game model
model M e set of traces returning expr
e distinguish ab/normally terminating
traces trace start P-state, moves, end
P-state P-state set of (negated) P members move
expr position (in typing)
11
p.a. game models
you() y qyou,yyou
you()9 y9 qyou,yyou
n you()9 () qyou,yyou
if sat( )
y9/n
12
wrestle game model
goer1
()f1
qf1,qyou,nyou
()f1
goer0
qyou,0you,qf
goer0
qf1,()f1
()f

()f
qyou,1you,qf
goer0
13
wrestle p.a. model
()f1
qf1,qyou,nyou
()f1
qyou,yyou,qf
qf1,()f1
()f
()f
14
about this formulation
  • simple
  • stateful and p.a. variants similar
  • control semantics orthogonal to state semantics
    (control ignored in this talk!)
  • less compositional in spirit than some game
    semantics
  • - environments are important
  • - p.a. semantics difficult to handle otherwise

15
p.a. properties
  • the p.a. model is decidable (finite-state)
  • if p.a. model of M has no aborting traces then M
    is safe

16
syntactic predicate annotation
  • we can trivially move predicate annotations from
    the model to the program
  • this can be used to minimize the predicate state
    size

17
annotated wrestle
letp goer 0 in bool goer 0 letp
pile9 0 in nat pile nat n
you()10 n10 9 n assert(pile9
0) f (if pile gt 0 then nat
n you()9 goer 1
letp pile9 9 n in
pile - n
assert(pile9 9 - n)
if pile gt 0 then pile
- 9 n goer 0) assert(goer 0)
18
annotated p.a. model
pile9!0
pile99-n
goer1
qf1,qyou,nyou
()f1
qyou,yyou,qf
qf1,()f1
pile90
goer0
()f
goer0
19
game p.a. c.e.g.a.r.
  • make each conditional a predicate
  • as tightly scoped as possible
  • model check
  • safe gt safe
  • unsafe gt
  • check trace feasibility
  • widen scope of some letp if infeasible

20
c.e.g.a.r. wrestle
bool goer 0 nat pile nat n you()10
n10 9 n letp pile9 0 in assert(pile9
0) f (if letp pile gt 0 in pile gt 0 then nat
n you()9 goer 1 pile -
n letp pile9 9 n in
assert(pile9 9 - n) if letp
pile gt 0 in pile gt 0 then pile -
9 n goer 0) letp goer 0 in assert(goer
0)
21
c.e.g.a.r. wrestle
bool goer 0 letp pile9 0 in nat pile
nat n you()10 n10 9 n
assert(pile9 0) f (if letp pile gt 0 in pile gt
0 then nat n you()9 goer 1
pile - n letp pile9 9 n
in assert(pile9 9 - n) if letp
pile gt 0 in pile gt 0 then pile -
9 n goer 0) letp goer 0 in assert(goer
0)
22
c.e.g.a.r. wrestle
bool goer 0 letp pile9 0 in nat pile
nat n you()10 n10 9 n
assert(pile9 0) letp goer 0 in f (if
letp pile gt 0 in pile gt 0 then nat n
you()9 goer 1 pile - n
letp pile9 9 n in
assert(pile9 9 - n) if letp
pile gt 0 in pile gt 0 then pile
- 9 n goer 0) assert(goer 0)
23
c.e.g.a.r. wrestle
bool goer 0 letp goer 0 in letp pile9
0 in nat pile nat n you()10
n10 9 n assert(pile9 0) f
(if letp pile gt 0 in pile gt 0 then nat n
you()9 goer 1 pile -
n letp pile9 9 n in
assert(pile9 9 - n) if letp
pile gt 0 in pile gt 0 then pile
- 9 n goer 0) assert(goer 0)
24
c.e.g.a.r. wrestle
letp goer 0 in bool goer 0 letp
pile9 0 in nat pile nat n
you()10 n10 9 n assert(pile9
0) f (if letp pile gt 0 in pile gt 0
then nat n you()9 goer 1
pile - n letp pile9 9
n in assert(pile9 9 - n) if
letp pile gt 0 in pile gt 0 then
pile - 9 n goer 0) assert(goer 0)
25
c.e.g.a.r. wrestle
letp goer 0 in bool goer 0 letp
pile9 0 in nat pile nat n
you()10 n10 9 n assert(pile9
0) f (if letp pile gt 0 in pile gt 0
then nat n you()9 goer 1
pile - n
letp pile9 9 n in assert(pile9 9 - n)
if letp pile gt 0 in pile gt 0
then pile - 9 n goer
0) assert(goer 0)
26
c.e.g.a.r. wrestle
letp goer 0 in bool goer 0 letp
pile9 0 in nat pile nat n
you()10 n10 9 n assert(pile9
0) f (if letp pile gt 0 in pile gt 0
then nat n you()9 goer 1
letp pile9 9 n in
pile - n
assert(pile9 9 - n) if
letp pile gt 0 in pile gt 0
then pile - 9 n goer 0)
assert(goer 0)
27
c.e.g.a.r. wrestle
letp goer 0 in bool goer 0 letp
pile9 0 in nat pile nat n
you()10 n10 9 n assert(pile9
0) f (if letp pile gt 0 in pile gt 0
then nat n you()9 goer 1
letp pile9 9 n in
pile - n
assert(pile9 9 - n)
if letp pile gt 0 in pile gt 0
then pile - 9 n goer 0)
assert(goer 0)
Write a Comment
User Comments (0)
About PowerShow.com