grand gauge-Higgs unification - PowerPoint PPT Presentation

About This Presentation
Title:

grand gauge-Higgs unification

Description:

Title: Sliding Singlet Mechanism and E6 Unification Author: yamasita Last modified by: yamasita Created Date: 4/19/2003 4:09:52 PM Document presentation format – PowerPoint PPT presentation

Number of Views:102
Avg rating:3.0/5.0
Slides: 18
Provided by: yam103
Category:

less

Transcript and Presenter's Notes

Title: grand gauge-Higgs unification


1
grand gauge-Higgs unification
  • ?? ??
  • (??? ? ???)

2011/3/8 _at_?????????2011
based on arXiv1103.1234 (appeared
today) in collaboration with K. Kojima
(Kyushu) K. Takenaga (Kumamoto Health Science)
2
Introduction
D.B. Fairlie (1979) N.S. Manton (1979)
  • Gauge-Higgs Unification

5D theory
gauge field
compactification
4D theory
gauge field
scalar field
with KK modes
Higgs
Hosotani mechanism
Y.Hosotani (1989-)
3
Introduction
  • Hosotani mechanism

Y. Hosotani (1989-)
  • symmetry breaking by VEVs of
  • Wilson line phase zero-mode of A5
  • before orbifold breaking
  • applied to GUT breaking (A5 adjoint)

Y. Kawamura (2000-)
in models w/ no chiral fermions
  • chiral fermion
  • fundamental repr.
  • after
  • mainly applied to EW breaking

Hosotanis talk
GUT breaking in models w/ chiral fermion?
K.Kojima K.Takenaga T.Y.
4
Introduction
  • difficulty

K.Kojima K.Takenaga T.Y.
  • orbifold action projects out adjoint scalars
  • this difficulty is shared w/ heterotic string

Kuwakinos talk
  • well studied, classified w/ Kac-Moody level
  • diagonal embedding method

Why cant we use this in our pheno. models?
5
Plan
  • Introduction
  • massless adjoint scalar
  • Fermions
  • Applications
  • Summary

6
massless adjoint scalar
  • Orbifold

ex)
Fields may not be invariant!
ex)
symm. transformation
7
massless adjoint scalar
  • Orbifold breaking

Y.Kawamura (2000)
ex) SU(3) ? SU(2)U(1)
projected out
8
massless adjoint scalar
  • diagonal embedding

K.R.Dienes J.March-Russel (1996)
diagonal part
permutation as orbifold action
adjoint scalar
9
Plan
  • Introduction
  • massless adjoint scalar
  • Fermions
  • Applications
  • Summary

10
Fermions
K.Kojima K.Takenaga T.Y.
  • exchange symmetry

vector-like
chiral
11
Fermions
K.Kojima K.Takenaga T.Y.
  • KK spectrum

(basically) same as S1
BG
  • when R2 is trivial completely same

12
Fermions
K.Kojima K.Takenaga T.Y.
  • KK spectrum

(basically) same as S1
BG
  • when R2 is non-trivial slightly different

as if non-local interaction
13
Fermions
K.Kojima K.Takenaga T.Y.
  • KK spectrum

(basically) same as S1
BG
  • when R2 is non-trivial slightly different

14
Plan
  • Introduction
  • massless adjoint scalar
  • Fermions
  • Applications
  • Summary

15
Applications
K.Kojima K.Takenaga T.Y.
The results in literatures can be easily
reproduced, besides chiral fermions (on the
branes).
  • SU(5)
  • it is not easy to realize vacua where SU(5) is
  • broken down to SM, as global minima.

A.T.Davies A.McLachlan (1989)
  • it is claimed the desired minimum can be
    realized w/
  • fermions 5, 10
  • scalars 5, 315, as a local
    minimum

V.B.Svetovoi N.G.Khariton,(1986)
anti-periodic fermion
16
Summary
  • We propose a novel way to break GUT-symm.
  • via the Hosotani mechanism.
  • adjoint scalars by diagonal embedding
  • chiral fermions on branes
  • It turns out KK spectra are basically
  • the same as in S1 models

results in literatures are easily reproduced.
  • SU(5) ? GSM is not easy as global minima
  • model w/ desired vacuum as local minimum.

17
Summary
  • future works
  • SUSY and/or RS
  • doublet-triplet splitting
  • gauge coupling unification
  • concrete model building
Write a Comment
User Comments (0)
About PowerShow.com