Searches for New Phenomena at CDF - PowerPoint PPT Presentation

About This Presentation
Title:

Searches for New Phenomena at CDF

Description:

Radiative corrections to Higgs acquire SUSY corrections: No fine-tuning required ... Data mass distribution agrees with SM expectation: mvis 120 GeV: 8.4 0.9 ... – PowerPoint PPT presentation

Number of Views:101
Avg rating:3.0/5.0
Slides: 59
Provided by: beatehe
Category:

less

Transcript and Presenter's Notes

Title: Searches for New Phenomena at CDF


1
Searches for New Phenomena at CDF
  • Beate Heinemann, University of Liverpool
  • Introduction
  • Supersymmetry
  • Higgs
  • Squarks and Gluinos
  • Charginos and Neutralinos
  • Indirect search Bs?mm
  • Non-SUSY
  • Dilepton Mass Spectrum
  • Signatrure DiphotonX
  • Summary and Outlook

UCLA, March 15th 2006
2
The Standard Model
  • Matter is made out of fermions
  • quarks and leptons
  • 3 generations
  • Forces are carried by Bosons
  • Electroweak ?,W,Z
  • Strong gluons
  • Higgs boson
  • Gives mass to particles
  • Not found yet

H
3
What is Beyond the SM?
  • Many good reasons to believe there is as yet
    unknown physics beyond the SM
  • Many possible new particles/theories
  • Supersymmetry
  • Many flavours
  • Extra dimensions (G)
  • New gauge groups (Z, W,)
  • New fermions (e, t, b, )
  • Leptoquarks
  • Can show up!
  • As subtle deviations in precision measurements
  • In direct searches for new particles

4
There is a Lot Unknown
  • The Standard Model
  • only accounts for 4 of matter in Universe
  • No candidate for Cold Dark Matter (25)
  • cannot explain large mass hierarchy in fermion
    sector
  • gt10 orders of magnitude
  • does not allow grand unification
  • electroweak and strong interactions do not unify
  • has large radiative corrections in Higgs sector
  • require fine-tuning of parameters
  • Cannot explain matter-antimatter asymmetry?
  • Supersymmetry can solve three
  • of these problems

Hubble Constant
Matter Density
SM
5
Whats Nice about Susy?
With SUSY
  • Unifications of forces possible
  • Dark matter candidate exists
  • The lightest neutral gaugino
  • Radiative corrections to Higgs acquire SUSY
    corrections
  • No fine-tuning required
  • Changes relationship between mW, mtop and mH
  • Also consistent with precision measurements of MW
    and mtop

6
CDF and the Tevatron
7
Tevatron Run II
  • Worlds highest energy collider
  • Tevatron Accelerator
  • Integrated luminosity gt1.5 fb-1 by now
  • CDF data taking efficiency about 83
  • Integrate ?Ldt4-8 fb-1 by 2009

_
p
p
vs(TeV) Dt(ns) L(cm-2 s-1)
Run II 1.96 396 1.7x1032
Key parameter N? ?Ldt
Delivered 1.6 fb-1 Recorded 1.3 fb-1
8
Tevatron Luminosity
9
Measurement of Final State Objects with CDF
Measurement of Final State Objects with CDF
10
Measurement of Final State Objects with CDF
Measurement of Final State Objects with CDF
  • Electron ID
  • Coverage hlt3.6
  • hlt2 (w/ trk)
  • ID eff. 80-90
  • Photon ID
  • Coverage hlt2.8
  • ID eff. 80

11
Measurement of Final State Objects with CDF
Measurement of Final State Objects with CDF
  • Muon ID
  • Coverage hlt1
  • ID eff. 90-100

12
Measurement of Final State Objects with CDF
Measurement of Final State Objects with CDF
  • Tau ID
  • Narrow iso. cluster
  • Low tracks
  • p0 identification
  • Coverage hlt1
  • ID eff. 46

13
Measurement of Final State Objects with CDF
  • Jet ID
  • Cluster of CAL towers
  • Coverage hlt3.6
  • Heavy Flavor Jet Tagging
  • Id HF jets via semi-leptonic decay
  • Find soft lepton in jets
  • Coverage hlt1
  • Id HF jets via finding displaced vertex
  • Coverage hlt1.5

14
Supersymmetry
15
Supersymmetry
  • SM particles have supersymmetric partners
  • Differ by 1/2 unit in spin
  • Sfermions (squarks, selectron, smuon, ...) spin
    0
  • gauginos (chargino, neutralino, gluino,) spin
    1/2
  • No SUSY particles found as yet
  • SUSY must be broken breaking mechanism
    determines phenomenology
  • More than 100 parameters even in minimal models!

16
Sparticle Cross Sections Tevatron
Cross Section (pb)
150 events produced so far (1.5 fb-1)
T. Plehn, PROSPINO
17
Sparticle Cross SectionsLHC
Cross Section (pb)
100 events with 1 fb-1
T. Plehn, PROSPINO
18
Sparticle Cross SectionsLHC
100 events with 1 pb-1
Cross Section (pb)
100 events with 1 fb-1
T. Plehn, PROSPINO
19
Higgs in the MSSM
  • Minimal Supersymmetric Standard Model
  • 2 Higgs-Fields Parameter tanbltHugt/ltHdgt
  • 5 Higgs bosons h, H, A, H
  • Neutral Higgs Boson
  • Pseudoscalar A
  • Scalar H, h
  • Lightest Higgs (h) very similar to SM
  • At high tanß
  • A is degenerate in mass with either h or H
  • Decay into either tt or bb for mAlt300 GeV
  • BR(A ?tt) 10, BR(A? bb) 90
  • Cross section enhanced with tan2?
  • C. Balazs, J.L.Diaz-Cruz, H.J.He, T.Tait and C.P.
    Yuan, PRD 59, 055016 (1999)
  • M.Carena, S.Mrenna and C.Wagner, PRD 60, 075010
    (1999)
  • M.Carena, S.Mrenna and C.Wagner, PRD 62, 055008
    (2000)

20
Neutral MSSM Higgs
  • Production mechanisms
  • bb ? A/h/H
  • gg ? A/h/H
  • Experimentally
  • pp ? ?bX ? bbbX
  • pp ? ?X ? tt X

21
MSSM Higgs Tau-Selection
  • Select t t Events
  • One t decays to e or m
  • One t decays to hadrons
  • Require
  • e or m with pTgt10 GeV
  • Hadronic t
  • Narrow Jet with low multiplicity
  • 1 or 3 tracks in 10o cone
  • No tracks between 10o and 30o
  • Cone size descreasing with increasing energy
  • Low p0 multiplicity
  • Masslt1.8 GeV
  • Kinematic cuts against background
  • Wjets
  • Photonjets
  • Dijets

22
Acceptance and Background
  • Main background
  • Drell-Yan tt
  • Indistinguishable signature gt Separate
    kinematically
  • No full mass reconstruction possible for low
    Higgs pT
  • Form mass like quantity mvism(t,e/m,ET)
  • Good separation between signal and background
  • Data mass distribution agrees with SM
    expectation
  • mvisgt120 GeV
  • 8.40.9 expected, 11 observed

23
MSSM Higgs Results
  • CDF pp ? AX? ttX
  • Sensitivity at high tanb
  • Exploting regime beyond LEP
  • Brandnew result from DØ
  • Combined with other mode
  • pp ? bAX?bbbX
  • Future (L8 fb-1)
  • Probe values down to 25-30!

24
3rd generation Squarks

  • 3rd generation is special
  • Masses of one can be very low due to large SM
    mass
  • Particularly at high tan?
  • Direct production or from gluino decays
  • pp ?bb or tt
  • pp ?gg ?bbbb or tttt
  • Decay of sbottom and stop
  • b ?b?0
  • Stop depends on mass
  • Heavy t ?t?0
  • Medium t ?b? ?bW?0
  • Light t ?c?0




















25
Bottom Squarks
  • This analysis
  • Gluino rather light 200-300 GeV
  • BR(g-gtbb)100 assumed
  • Spectacular signature
  • 4 b-quarks ET
  • Require b-jets and ETgt80 GeV



Expect2.60.7 Observe 4
Exclude new parameter space in gluino vs. sbottom
mass plane
26
Light Stop-Quark Motivation
  • If stop quark is light
  • decay only via t-gtcc10
  • E.g. consistent with relic density from WMAP data
  • Balazs, Carena, Wagner hep-ph/0403224
  • WCDM0.11-0.02
  • m(t)-m(c10)15-30 GeV/c2
  • m(t)lt165 GeV/c2
  • Search for 2 charm-jets and large Et
  • ET(jet)gt35, 25 GeV
  • ETgt55 GeV






27
Light Stop-Quark Result
  • Charm jets
  • Use jet probability to tag charm
  • Probability of tracks originating from primary
    vertex
  • Improves signal to background ratio
  • Signal Efficiency 30
  • Background rejection 92
  • Data consistent with background estimate
  • Observed 11
  • Expected 8.32.3-1.7
  • Main background
  • Z jj -gt vvjj
  • Wjj -gt tvjj

28
Stop Quark Result and Future
  • Due to slight excess in data
  • No limit set on stop quark mass yet
  • Future light stop reach
  • L1 fb-1 m(t)lt160 GeV/c2
  • L4 fb-1 m(t)lt180 GeV/c2
  • LHC
  • Direct production will be tough to trigger
  • But gluino decay to stop and top yields striking
    signature!
  • Two Ws, two b-quarks, two c-quarks and missing
    ET
  • If m(g)gtm(t)m(t)













29
Charginos and Neutralinos
  • Charginos and Neutralionos
  • SUSY partners of W, Z, photon, Higgs
  • Mixed states of those
  • Signature
  • 3 leptons
  • Recent analyses of EWK precision data
  • J. Ellis, S. Heinemeyer, K. Olive, G. Weiglein
  • hep-ph/0411216
  • Light SUSY preferred


30
3 leptons
Et
  • Many analyses to cover full phase space
  • Low tan?
  • 2ee/m
  • 2me/m
  • mee/m
  • High tan?
  • 2eisolated track
  • Sensitive to one-prong tau-decay
  • Other requirements
  • Dilepton mass gt15 GeV and not within Z mass range
  • Less than 2 jets
  • Significant ET

31
Trileptons Result
Analysis Expected background Example SUSY Data
Trilepton (??l) 0.64?0.18 1.6?0.2 1
Trilepton (?el) 0.78?0.13 1.0?0.2 0
Trilepton (eel) 0.17?0.05 0.5?0.1 0
Dielectrontrack 0.49?0.14 1.2?0.1 1
Trilepton(??l) 0.13?0.03 0.12-0.02 0
Still no SUSY! Will need to set limit
32
3-muon Event
33
Rare Decay Bs?mm-
  • SM rate heavily suppressed
  • SUSY rate may be enhanced
  • Related to Dark Matter cross section (in one of 3
    cosmologically interesting regions)
  • Recently gained a lot of attention in WMAP data
    SUSY analyses, see e.g.
  • B. Allanach, C. Lester hep/ph-0507383
  • J. Ellis et al., hep-ph/0504196
  • S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033
  • R. Dermisek et al., hep-ph/0507233

(Buchalla Buras, Misiak Urban)
(Babu, Kolda hep-ph/9909476 many more)
S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033
34
Bs?mm- vs. Trileptons
A.Dedes, S. Mrenna, U. Nierste, P. Richardson
hep-ph/0507233
35
Indirect Search Bs-gtmm
  • Preselection
  • Two muons with pTgt1.5 GeV/c
  • Dimuon vertex displaced from primary
  • Identify variables that separate signal from
    background
  • Decay length ?
  • Points towards primary vertex
  • Isolated from other tracks
  • Construct likelihood of variables
  • Excellent separation
  • Cut at likelihood ratio gt0.99

36
Bs-gtmm Result and Future
  • Result
  • 0 events observed
  • Backgrounds
  • 0.81 0.12 for (CMU-CMU)
  • 0.66 0.13 for (CMU-CMX)
  • Branching Ratio
  • CDF
  • BR(Bs-gtmm)lt1.5 x 10-7 at 90C.L.
  • Combined with D0
  • BR(Bs-gtmm)lt1.2 x 10-7 at 90C.L.
  • Future
  • Probe values of 2x10-8

37
Impact of Bs?mm- limits Now
S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033
A.Dedes, S. Mrenna, U. Nierste, P. Richardson
hep-ph/0507233
  • Starting to constrain MSSM parameter space

38
Impact of Bs?mm- limits L8 fb-1
S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033
A.Dedes, S. Mrenna, U. Nierste, P. Richardson
hep-ph/0507233
  • Tevatron will severely constrain parameter space

39
Impact of Bs?mm- limits LHC
S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033
A.Dedes, S. Mrenna, U. Nierste, P. Richardson
hep-ph/0507233
  • LHC will probe SM value with about 100 fb-1

40
Non-Susy Searches
41
High Mass Dileptons
Standard Model high mass dilepton production
New physics at high mass
  • Resonance signature
  • Spin-1 Z, W
  • Spin-2 Randall-Sundrum (RS) Graviton
  • Spin-0 Higgs, Sneutrino
  • Tail Enhancement
  • Contact Interactions
  • Large Extra Dimension (Arkhani-Hamed, Dimopoulos,
    Dvali)

42
Z?ee Search
  • Dielectron mass spectrum and angular
    distribution
  • 2D analysis improves sensitivity
  • Data agree well with Standard Model spectrum
  • No evidence for mass peak

43
Z?ee Signal Examples
  • Angular distribution has different sensitivity
    for different Z models

44
Limits on New Physics
  • Mass peak search
  • Tail enhancement contact interaction

Model ZSM Z? Z? Z? ZI ZN Zsec
Mass limit (GeV/c2) 860 735 725 745 650 710 675
45
Signature Based Searches
  • All searches cover unique signatures, e.g.
  • Three lepton and missing ET
  • B- or c-jets and missing ET
  • 2 b--jets or c-jets and missing ET
  • Dilepton invariant mass
  • However, can also search really model independent
    to make sure we dont miss anything!
  • DiphotonX

46
Signature DiphotonX
  • Search for any objects produced in association
    with 2 photons
  • Electron, muon, tau
  • Photon
  • Jet
  • Missing ET
  • Data consistent with background prediction

e,m,g
SM Data
??e 4.5?0.8 2
???? 0.5?0.1 0
???? 1.9?0.6 4
???ET 0.3?0.1 0
47
DiphotonX Invariant Mass
  • Kinematic distributions also agree well with
    background prediction
  • Triphoton analysis first physics result with gt1
    fb-1 of data!

48
Summary and Outlook
  • CDF and Tevatron running great!
  • Most analyses based on up to 350-750 pb-1
  • Will analyze 1 fb-1 by summer 2006
  • Anticipate 4.4-8.6 fb-1 by 2009
  • Searches probe Nature in new, unique way
  • Tevatron most powerful tool today
  • provide worlds best constraints on nearly
    anything that is being searched for
  • LHC will be very powerful in the future
  • It is an exciting time

more than 1 fb-1!
49
Backup Slides
50
Dirac Magnetic Monopole
  • Bends in the wrong plane (? high pt)
  • Large ionization in scint (gt500 Mips!)
  • Large dE/dx in drift chamber

TOF trigger designed specifically for monopole
search
mmonopole gt 350 GeV/c2
51
GMSB ggEt
  • Assume c01 is NLSP
  • Decay to Gg
  • G light m 1 keV
  • Inspired by CDF eeggEt
  • event in Run I
  • SM exp. 10-6
  • D0 (CDF) Inclusive search
  • 2 photons Et gt 20 (13) GeV
  • Et gt 40 (45) GeV




Exp. Obs. m(c1)
D0 2.50.5 1 gt192 GeV
CDF 0.30.1 0 gt168 GeV
D0CDF m(c1)gt 209 GeV/c2
52
Tevatron Future
53
SUSY Particles
gravitino
54
Neutral Spin-1 Bosons Z
  • 2 high-PT electrons, muons, taus
  • Data agree with BG (Drell-Yan)
  • Interpret in Z models
  • E6-models y, h, c, I
  • SM-like couplings (toy model)

55
Future High Energy Colliders
LHC (2007-?)
  • ILC (gt2020?)

p
e
p
e-
vs0.5-1 TeV
vs14 TeV
56
Randall-Sundrum Graviton
  • Analysis
  • 2 photon mass spectrum
  • Backgrounds
  • direct diphoton production
  • Jets ?0???
  • Data consistent with background
  • Relevant parameters
  • Coupling k/MPl
  • Mass of 1st KK-mode

57
Randall-Sundrum Graviton
  • Analysis
  • 2 photon mass spectrum
  • Backgrounds
  • direct diphoton production
  • Jets ?0???
  • Data consistent with background

58
Extra Dimensions
  • Attempt to solve hierarchy problem by introducing
    extra dimensions at TeV scale
  • ADD-model
  • n EDs large 100mm-1fm
  • M2PL Rn MSn2 (n2-7)
  • Kaluza-Klein-tower of Gravitons ?continuum
  • Interfere with SM diagrams l1 (Hewett)
  • Randall Sundrum
  • Gravity propagates in single curved ED
  • ED small 1/MPl10-35 m
  • Large spacing between KK-excitations
  • ? resolve resonances
  • Signatures at Tevatron
  • Virtual exchange
  • 2 leptons, photons, Ws, Zs, etc.
  • BR(G-gtgg)2xBR(G-gtll)

KK
ee, mm, gg
q
_
q
Write a Comment
User Comments (0)
About PowerShow.com