Title: Binxun Ye and Binhua Li
1 2The Project
- Large
- Sky Area
- Multi-Object
- Fiber Spectroscopic
- Telescope
- --LAMOST--
- Scientific objectives
- Extra-galactic Spectroscopic Survey
- --Large scale structure of universe
- Stellar Spectroscopic Survey
- --Structure of the Galaxy
- Cross Identification of Multi-
- wavelength Survey
3The Project
- Technical Features
- Aperture gt4M, w/ 80 light concentrated in
2".0, f/5, - FoV5, 4000 Fibers
- --down to 20.5m, 2X107 Galaxies 108 Stellar
Objects in three years - Sky Coverage
- -1090
- --24,000 Sq. degree
- Spectral Coverage
- 390900 nm
- w/ Resolution 1 nm
- Schedule,etc.
- Schedule 7 yrs (19972004, delayed)
- Expected first
- light 2007
- Budget 235 M
- Site NAOC
- Xinglong Station
- 11734.5E
- 402336"N
4The Telescope
5The Spectrograph
- Overview
- Low Resolution Spectrograph
- --R1000
- --Limiting Magnitude 20m.5
- w/1h.5 exp.
- --?fiber320?m,
- 250 fibers/spectrograph
- --Gratings 700g/mm f. blue wing,
- 470g/mm f. red wing
- both blazed at 1080
- Medium Resolution Spectrograph
- High Resolution Spectrograph
-
Confirguration
Fiber positioning
Setup
6The Camera System
- Overview
- 16 Spectrographs work for
- 4000 fibers
- 1 Blue 1 Red Camera
- f. each Spectrograph
- --32 in total cameras
- 250 object spectra from
- Each Camera
- --32 Large format CCDs
- --Half of them have to be
- Thinned Back-illumd
- Each Camera have to be
- positioned in middle of a
- Schmidt-type configuration
Fiber image over CCD pixels
96µm
96µm
dl0.5
nm
LRS
96µm
96µm
48µm
dl0.25
nm
HRS
7The Camera System
- Design Parameters
- Spectral Coverage 390nm900nm
- Resolution 9 Ã… Dispersion 80Ã…/mm
- 250 Spectra per Frame, Each 112?m High
- Expos. 3 30mins w/ 1 min gap sep.
F4m aperture,1.5h exp. Photons at CCD Photons at CCD SNR
F4m aperture,1.5h exp. SKY OBJ. SNR
20m5,0.5nm, (21408) 16562 1571 12
17m0,0.25nm, (268871) 5043 12019 92
galaxies, Stars
8System Design
Design Philosophy
- Clear difinitions of all the Interfaces to the
Spectrograph and OCS - Clean, Simple configurations, practicle and
dedicated design all for reliable operation and
burgit Saving - Short scheduling to compensate the project time
already lost.
9System Design
E2V-CCD203-82-1
Imager selection
FORMAT 4K?4K , PIXEL 12?12 ?m QE
non-Uniformity 4 max. Readout Noise
3e(200KHz), 8e(1MHz) CTE 0.99999min (Parallel
Serial) Dark _at_173K 10e/pixel/hour max. Sensitive
Surface Flatness ?15 ?m Package with flexi-PCB
connector
Fiber positioning
10System Design
Controller
AACAS
Astronomical Array Controling Acquisition System
SHUTTER
OPTO
shutter
TEMPERATURE
COUPLER
CONTROL
CCD
BIAS
FPGA
VOLTAGE
BIAS
CONFIGURE
CCD
PROTE
NIOS
Server
CTION
CCD CLK
CCD CLK
Dewar
EMBEDDED
DRIVER
CONFIGURE
TCP/IP
PROCESSOR
DC
RSTORE
PRE
16
BIT
GAIN
AMP
A/D
CDS
POWER
11System Design
EMBEDDED PROCESSOR CONTROL
FPGA
SDRAM
NIOS
USER LOGIC
16MB
EMBEDDED
PROCESSOR
CCD Work MODE
ETHER NET IRQ
SRAM
GAIN CONTROL
1MB
MEMORY Interface
DMA INTERFACE
BINNING FACTOR
FLASH
8MB
RS232 INTERFACE
Window ReadOut
10M/100M
PIO INTERFACE
Integrate Timing
ETHERNET
USER INTERFACE
CCD SEQUENCE
V CONFIGURE
V-CLOCK
RJ45
H-CLOCK
12System Design
EMBEDDED PROCESSOR
13System Design
Limitation on dimensions
Camera head (A) has to be limited
within 100?100?100 mm But still rays like e
and r are obstructed. Another challenge is the
CCD chip has to be positioned only 6 mm behind
the field lens w/ accuracy of ?0.1mm. B cold
finger jacket C CCD controller D cryogenic
compressor
Beam Spliter
e
CCD
r
A
Grating
IMAGING MIRROR
Field lens
B
C
D
14System Design
Cryogenics
- The mixed-gases Joule-Thomson (J-T)
cryo-refrigerator (MJTR) - built by the Technical Institute of Physics and
Chemistry (TIPC), CAS - Cooling temperature -120C
- High efficiency, COP gt 0.15 at -120C
- High reliability, long life without any
maintenance for 5 years
15System Design
Designed System
Camera head
C
C
D
Field Lens( window)
CCD holder
???
Heat Xchanger
??
????
???
??
??CCD???
?????
????
??
A/D
??
??
??
PWR
??
??
??
??
??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
Compressor
Switching
Server
?
?
?
?
16System Design
Software Flowchart