V. Non-Binary Codes: Introduction to Reed Solomon Codes - PowerPoint PPT Presentation

1 / 10
About This Presentation
Title:

V. Non-Binary Codes: Introduction to Reed Solomon Codes

Description:

... n-k = 2t Symbol Error correcting capability: t ... Introduction to Reed Solomon Codes Reed Solomon Codes Reed Solomon Codes Generator ... – PowerPoint PPT presentation

Number of Views:197
Avg rating:3.0/5.0
Slides: 11
Provided by: edue111
Category:

less

Transcript and Presenter's Notes

Title: V. Non-Binary Codes: Introduction to Reed Solomon Codes


1
V. Non-Binary CodesIntroduction to Reed Solomon
Codes
2
Reed Solomon Codes
  • Reed Solomon Codes are
  • Linear Block Codes
  • Cyclic Codes
  • Non-Binary Codes (Symbols are made up of m-bit
    sequences)
  • Used in channel coding for a wide range of
    applications, including
  • Storage devices (tapes, compact disks, DVDs,
    bar-codes)
  • Wireless communication (cellular telephones,
    microwave links, satellites, )
  • Digital television
  • High-speed modems (ADSL, xDSL).

3
Reed Solomon Codes
  • For any positive integer m3, there exists a
    non-binary Reed Solomon code such that
  • Code Length n 2m-1
  • No. of information symbols k
    2m-1-2t
  • No. of parity check symbols n-k 2t
  • Symbol Error correcting capability t

4
Generator Polynomial
  • Example (7,3) double-symbol correcting
    Reed-Solomon Code over GF(23)

5
Encoding in Systematic Form
  • Three Steps
  • Multiply the non-binary message polynomial u(X)
    by Xn-k
  • Dividing Xn-ku(X) by g(X) to obtain the remainder
    b(X)
  • Forming the codeword b(X)Xn-ku(X)

Encoding Circuit is a Division Circuit
Gate
g2
gn-k-1
g1
g0
..




bn-k-1
b0
b1
b2
Xn-ku(X)
Codeword
Information Symbols
Parity Check Symbols
6
Encoding Circuit Example Implementation
Encoding Circuit of (7,3) RS Cyclic Code with
g(X)a3a1X a0X2 a3X3X4
Gate
a3
a0
a3
a1
x
x
x
x




b3
b1
b2
b0
Xn-ku(X)
Codeword
Information Symbols
Parity Check Symbols
7
Bits to Symbols Mapping
Receiver Side
Transmitter Side
Decoded Non-Binary Data
Decoded binary Data
Received Non-Binary Data
Binary Data
Non-Binary Data
Encoded Non-Binary Data
Symbol Mapping
Channel Encoder
Channel Decoder
Bit Mapping
Symbol ai(a) Mapping
0 0 0 0 0
a0 a0 1 0 0
a1 a 1 0 1 0
a2 a2 0 0 1
a3 1a 1 1 0
a4 a a2 0 1 1
a5 1a a2 1 1 1
a6 1 a2 1 0 1
  • Information message is usually binary
  • A symbol mapping is usually necessary for the
    encoding process
  • Remember the polynomial representation of symbols
    in GF(2m)
  • The coefficients of the polynomial representation
    may be used for the mapping

8
Encoding Example
  • Binary Information
  • Message

0 1 0 1 1 0 1 1 1
Symbol Mapping
Non-Binary Information Message
a a3X a5X2
a5
a3
a
  • Encoding Mathematics
  • X4u(X) aX4 a3X5 a5X6.
  • Dividing by g(X). The remainder b(X) a0 a2X
    a4X2 a6X3
  • v(X)b(X)X4u(X) a0 a2X a4X2 a6X3 aX4 a3X5
    a5X6
  • V(a0 a2 a4 a6 a a3 a5)
  • In Binary V(1 0 0 0 0 1 0 1 1 1 0 1 0 1 0
    1 1 0 1 1 1)

9
Encoding Example
  • Binary Information
  • Message

0 1 0 1 1 0 1 1 1
Symbol Mapping
Non-Binary Information Message
a a3X a5X2
a5
a3
a
Assume u(a a3 a5)
Input Register Contents
0 0 0 0 (Initial State)
a5 a a6 a5 a (1st Shift)
a3 a3 0 a2 a2 (2nd Shift)
a a0 a2 a4 a6 (3rd Shift)
a a3 a5
V(a0 a2 a4 a6 a a3 a5)
10
Syndrome Computation
  • Valid Codewords V(X) are divisible by g(X)
  • a, a2, a3, , a2t are roots of g(X)

Example in (7,3) RS Code r(X) a0 a2X a4X2
a0X3 a6X4 a3X5 a5X6
?r is not a codeword
Write a Comment
User Comments (0)
About PowerShow.com