Title: COMPARTIMENTS DE LA CELLULE ET TRI DES PROT
1COMPARTIMENTS DE LA CELLULE ET TRI DES PROTÉINES
2COMPARTIMENTS DE LA CELLULE ET TRI DES PROTÉINES
- III - Transport des protéines dans les
mitochondries et les chloroplastes
3A - Rappels sur la mitochondrie
- Structure
- Les compartiments
- ADN mitochondrial (traité ailleurs)
4Frey,TG2000 (fig1)
5Les compartiments(Capaldi,RA (2002) BBA1555p192)
- Trois compartiments membranaires
- Membrane externe
- Membrane interne
- Crêtes
- Trois espaces
- Espace intermembranaire
- Espaces "intracristal"
- Matrice
6Morphologie
- Forme et distribution variables
- Variable en fonction du stade du cycle cellulaire
- petit organite ovoïde en phase S et M
- réticulaire en G0
- Modèle de Palade (1952) 2 membranes, modèle
retenu dans les livres - Modèle de Sjöstrand (1956) 3 membranes
7"Computer Axial Tomography (CAR) scan" 60 à
120 images à 1 ou 2 de -60 à 60
- Crêtes reliées à la membrane interne par des
tubules de 28 6 nm
8Frey,TG2002p196(fig1)
Une des coupes de a ? aspect tubulaires des
jonctions crête membrane interne
ME 0,5? à 400 kV ? Jonctions tubulaires des
crêtes
La même mitochondrie
- Modèle 3D
- Membrane externe
- Membrane interne
- Crêtes
4 crêtes de 4 couleurs différentes jonctions
tubulaires
http//www.sci.sdsu.edu/TFrey/MitoMovie.htm
9Frey,TG2002p196(fig2)
- a - Même mitochondrie crêtes avec les jonctions
en rouge - b - Modèle idéalisé de jonction crête - membrane
10Frey,TG2000 (fig3)
- Computer models generated from segmented 3D
tomograms of a mitochondrion in chick cerebellum.
(a) The entire model showing all cristae in
yellow, the inner boundary membrane in light
blue, and the outer membrane in dark blue. (b)
Outer membrane, inner boundary membrane and four
representative cristae in different colors.
Quicktime videos of these models can be found at
http//www.sci.sdsu.edu/tfrey/mitomovie.htm
11Frey,TG2000 (fig5)
- Amibe crêtes paracristallines
12Frey,TG2000 (fig2)
Contacts OM/IM
13Griparic,L2001Traffic
Myopathie mitochondriale
- Reconstruction 3-D d une mitochondrie par
tomographie électronique - Suspension de mitochondries congelée,
cryomicroscopie électronique, tomographie
assistée par ordinateur
Rouge membrane interne
Autres couleurs crêtes
14Frey,TG2002p196(fig3)
- Mitochondrie de Xenope
- Mitochondrie ayant perdu son cytochrome c
- Mitochondrie n'ayant pas perdu son cytochrome c
- Mitochondrie avec Ca augmenté
15En vidéo microscopie
- Dynamique sauts sur de petits mouvements plus
continus - Intervention des microtubules et microfilaments
- http//www.sci.sdsu.edu/TFrey/MitoMovie.htm
16Griparic,L2001Traffic
- Distribution typique des mitochondries dans une
cellule de mammifère en culture (myoblaste de
souris observé in vivo par le colorant vital
MitoTracker)
17Griparic,L2001Traffic
- Réseau de mitochondries dans une cellule
musculaire de C. elegans mutée. - Le blocage de la division de la membrane externe
favorise la fusion des mitochondries aboutissant
à un réseau. - La membrane interne continue à se diviser.
- Vert membrane mitochondriale ext
- Rouge matrice mitochondriale
- Cellules vivantes (GFP)
18Griparic,L2001Traffic
- Crêtes mitochondriales de cellules de cortex
surrénalien. - A - Rat traîté par corticotropin-releasing
hormone, (qui stimule la production de stéroïdes)
les crêtes sont tubulaires. - B - Cellule de la zone fasciculée aves des
crêtes vésiculaires.
19Griparic,L2001Traffic
- Inclusions paracristallines dans les
mitochondries dun enfant atteint de myopathie. - Mitochondries géantes avec des inclusions
paracristallines qui seraient des crêtes de la
membrane interne. - Se retrouve dans dautres situations
pathologiques.
20Frey,TG2000 (fig6)
- Model of a mitochondrion displaying highly
abnormal internal compartmentation from a patient
with a mitochondrial myopathy. The mitochondrion
contains numerous small vesicles (luminous green)
that do not connect to the inner boundary
membrane (blue). There is a second large internal
membrane (green), which has a vesicle-like
protrusion, suggesting either that this unusual
membrane is formed by fusion of the vesicles or,
conversely, that the vesicles are formed by
budding from it. Reproduced, with permission,
from M. Huizing.
Myopathie mitochondriale
21Rappel de quelques fonctions
- Production d'énergie
- Régulation du calcium intracellulaire
- Oxydation des acides gras
- Synthèse des stéroïdes
- Apoptose
22Localisation des protéines
- La plupart dans un seul compartiment
- Exceptions (crêtes membrane interne)
- Enzymes de la chaîne respiratoire
- ATP synthétase
23Constitution biochimique
- Environ 1000 protéines différentes
24Biogenèse
- Croissance dorganites préexistant
- Suivie de fission ?
- Nécessité dimportation de nouvelles protéines
25Capaldi,RA (2002) BBA1555p192
- Genèse par fragmentation du reticulum
mitochondrial -
- Marquage avec GFP-Pyruvate deshydrogénase
- Mitotraker marque le réseau mitochondrial
26Griparic,L2001Traffic
Cellule musculaire cardiaque de souris normale
Adipocyte de papillon(Calpodes ethlius)
- Clivage de la membrane mitochondriale interne
sans division de la mb externe
27B - TRANSPORT DES PROTÉINES DANS LES
MITOCHONDRIES ET LES CHOLOROPLASTES
28Schéma du routage
29Schéma du routage partiel
30Mitochondrie (rappel)
- Double membrane
- Synthèse d'ATP
- par transport d'électrons et phosphorylation
oxydative (mitochondrie) - par photosynthèse phosphorylante (chloroplaste)
- Contiennent leur ADN et leur machine à synthèse
protéique - La plupart de leur protéines est codée par le
noyau
31Les compartiments de la mitochondrie
- Jeu de protéines différent (1000 protéines
différentes dans la mitochondrie) - ? translocation sélective de 1 ou 2 membranes
- Les protéines codées par la mitochondrie sont
dans la membrane interne - Coordination des 2 types de protéines ?
- Mitochondriales (13 protéines connues de la
chaîne respiratoire) - nucléaires (les autres)
32Fig 12-22
Les 2 compartiments de la mitochondrie
Les 3 compartiments du chloroplaste
33Import dans la matrice(et membrane
mitochondriale externe)
- Protéines de fusion chez la levure
- Import post-traductionnel (quelques secondes ou
minutes) - Séquence Signal
- à lextrémité -N
- rapidement retiré (signal peptidase)
- hélice ? amphiphile
- AA d un côté de lhélice
- AA - de lautre côté de lhélice
- reconnu par des récepteurs spécifiques
34Fig 12-23
- Séquence signal pour l'import d'une protéine
mitochondriale - eg Cytochrome oxydase du complex IV
- Matrix Targeting Signal
1
5
9
12
12
16
Hélice ? de 3,6 résidus par tour
?
35Les translocateurs TOM TIM
- Complexes protéiques
- Translocator of the Outer Membrane (TOM40)
- Translocators of the Inner Membrane (TIM)
- TIM23
- TIM22
- 2 fonctions
- récepteur pour les protéines mitochondriales
précurseur - canal translocateur
36Au total 3 complexes
- TOM 40
- TIM 23
- TIM 22
37Pfanner,N2002p400(fig1)
- Les deux grandes voies d'importation des
protéines mitochondriales - Préprotéines à signal qui sera retiré par MPP
(Mitochondrial Processing Peptidase) - Précurseur des protéines hydrophobes
381 . TOM
- Import de toutes les protéines mitochondriales
codées par le noyau - Comprend le "General Import Pore" (GIP)
- Transporte le signal dans lespace
intermembranaire - Aide à linsertion des protéines
transmembranaires dans la membrane externe (on
nen reparlera plus)
39Rapaport,D2002
Récepteurs TOM 20, 22,70
Pore TOM 5, 6 ,7 , 20, 22 ,40
40Pfanner,N2002p400(fig2)
- Système de translocation de la membrane externe
de la mitochondrie - TOM
- TOM 20 avec une séquence liée (hélice ?)
- GIP TOM 40, 22, 7, 6, 5, 20
41TOM 40
- Forme le canal aqueux (de 20 nm) du GIP (General
Import Pore) - Utilisé par les deux voies de transport
- L'entrée se fait sous forme d'une boucle
- Associé à TOM 20, TOM 22, TOM 70 et TOM 5, TOM 6,
TOM 7
422 . TIM 23
- TIM 17,23,44 mtHsp70 co-chaperone Mge1
- Transport de certaines protéines dans la matrice
- Insertion de protéines transmembranaires dans la
membrane interne
43Pfanner,N2002p400(fig4)
- The Mitochondrial presequence translocase and the
Processing Peptidase (MPP). (a) The presequence
translocase consists of an innermembrane-
integrated pore complex (the Tim23 complex) and
the peripherally attached import motor at the
matrix side. Tim23 and Tim17 form a stable
complex in the inner membrane (IM). The amino
terminus of Tim23 in the intermembrane space
(IMS) is important for recognising the
presequences as they emerge from the TOM complex,
whereas the carboxy-terminal membrane-integrated
domain of Tim23 forms a channel for preproteins.
This channel is activated by the membrane
potential (??), which also exerts a pulling force
on the positively charged presequence. The import
motor consists of mtHsp70, the membrane-associated
protein Tim44, and the homodimeric co-chaperone
mitochondrial GrpE (Mge1, a nucleotide exchange
factor). The motor is driven by hydrolysis of
ATP. The heterodimeric MPP cleaves the
presequences. (b) The MPP binds the presequences
in an extended conformation in a large central
cavity between the ? and ? subunits (the
encircled area of MPP of a is shown modelled
after the structure of yeast MPP). MPP? binds the
conserved hydrophobic (hydro) sidechain of the
first amino acid residue of the mature protein in
a hydrophobic pocket that includes a
phenylalanine (Phe77). The conserved, positively
charged arginine residue in the 2 position is
bound by negatively charged residues (Glu160 and
Asp164) on MPP?. This brings the scissile peptide
bond (arrow) close to the essential active-site
zinc ion. The preprotein with the presequence is
shown in red and blue. Amino acid residues in
green belong to MPP? (the numbering starts with
residue 1 of the preprotein of Saccharomyces
cerevisiae MPP?).
443 . TIM 22
- Insertion de certaines protéines dans la membrane
interne dont - transporteur de ATP, ADP, Pi
45Pfanner,N2002p400(fig5)
- Import stages of hydrophobic membrane proteins to
the mitochondrial inner membrane - Stage I Cytosolic chaperones bind to the
precursor of a carrier protein (used here as an
example of a membrane protein) and keep it in an
import-competent state - Stage II The precursor protein is bound by
several Tom70 receptor molecules. The precursor
is then released in an ATP-dependent step and
transferred to the GIP. - Stage III The precursor protein is translocated
in a loop formation through the GIP and binds to
the Tim9Tim10 complex (via hydrophobic regions
of the precursor) - Stage IV Membrane integration of the carrier
precursor by the protein insertion complex (Tim22
complex) of the inner membrane depends on the
membrane potential (?ø - Stage V The carrier protein assembles to the
mature homodimer in the inner membrane.
46Complexe OXA
- Translocateur dans la membrane interne, de
protéines synthétisées dans la mitochondrie - Aide à l'insertion transmembranaire (interne) de
protéines transportées initialement dans la
matrice
47Fig 12-24
- les 3 translocateurs dans les membranes
mitochondriales
?
48Koehler,CM2000
Import des protéines et voies d'exportation dans
la mitochondrie
49Les protéines précurseurs mitochondriales sont
importées sous forme de polypeptides non repliés
- Analyse à partir de systèmes sans cellule
- Des protéines cytosoliques empêchent les
protéines mitochondriales de se replier sous leur
forme native - sont le plus souvent des protéines chaperones
(appartenant à la famille des hsp 70) - sont parfois spécifiques de leur signal
- puis sont retirées avant l'engagement dans le TOM
50Passage dans la matrice deux hypothèses
- Traverser deux membranes
- Traverser les deux membranes en même temps
51Fig 12-25
- Protocole expérimental
- la translocation se fait en deux étapes
- les deux membranes sont traversées en même temps
52Passage dans la matrice conclusion
- Traversée des deux membranes en même temps en
deux étapes - entrée du signal dans l'espace intermembranaire
par TOM - liaison du signal par TIM
- soit entrée dans la matrice
- soit entrée dans la membrane interne
- Présence de sites de contacts entre les deux
membranes - TOM et TIM peuvent fonctionner indépendamment les
uns des autres expérimentalement
53Fig 12-26
- Import des protéines dans la matrice
4 étapes
54Deux conditions pour diriger l'import des
protéines dans la mitochondrie
- Hydrolyse de l ATP
- en dehors de la mitochondrie
- et dans la matrice
- Gradient électrochimique dions H de part et
dautre de la membrane interne - pompage dions H à travers la membrane interne
ce gradient ne sert pas quà la synthèse dATP - la membrane externe est perméable aux ions en
raison de la présence de porine (comme les
bacilles gram -) ? pas de gradient
55Aspect énergétique de la translocation
- Libération des hsp 70 cytosoliques hors de la
protéine ? ATP - Translocation à travers un TIM ? gradient H
- Libération des hsp 70 mitochondriales hors de la
protéine ? ATP
56Fig 12-27
Nécessité -du gradient électrochimique à
travers la membrane interne et de -l'hydrolyse
de l'ATP pour limportation dans la matrice
mitochondriale
57Les hsp 70
- Cytosoliques
- Mitochondriales
- Se lient aux protéines non repliées
- Nécessitent de lATP pour se détacher
- Fournit finalement lénergie pour la
translocation par TIM 23 - Sont intimement associés à TIM 23
58Les deux modèles énergétiques dimportation
- Roue à cliquet thermique aller-retour
thermique dans le canal de TIM23 - Roue à cliquet ponté changement de
conformation de hsp 70 qui tire sur la chaîne - Dans les deux cas
- Roue à cliquet qui empêche le retour de la
protéine - liaison de hsp 70 à TIM 23
59Fig 12-28 (A)
60Fig 12-28 (B)
61Changement de hsp
- Les hsp 70 mitochondriales sont remplacées par
des hsp 60 mitochondriales dans la matrice
62Transport dans la membrane mitochondriale interne
et espace intermembranaire
- Même mécanisme au départ que pour la matrice
- Deux voies
- a - passage par la matrice
- b - pas de passage par la matrice
63Fig 12-26
- Même mécanisme au départ que pour matrice
4 étapes
64a - Passage par la matrice
- Le premier signal peptide est retiré (par une
signal peptidase matricielle spécifique) - 2ème signal peptide hydrophobe
- Transloque la protéine de la matrice
- dans la membrane mitochondriale interne ou
- à travers la membrane mitochondriale interne
- Utilise le complexe OXA comme translocateur
65Fig 12-29 (A)
- a - passage par la matrice
66b - pas de passage par la matrice
- Le 2ème signal se comporte comme un signal stop
de transfert (pour TOM) - ce qui arrête la translocation à travers la
membrane interne - Clivage du 1er signal peptide
- Glissement de TOM et poursuite de la
translocation à travers TOM
67Fig 12-29 (B)
- b - pas de passage par la matrice
68Transport dans lespace intermembranaire
- Même mécanisme au départ que pour matrice
- Deux voies
- passage par la matrice
- pas de passage par la matrice
- ? insertion dans la membrane interne (id. supra)
- Action dune peptidase spécifique
- Libération de la protéine soluble
69Fig 12-29 (C)
- Transport dans lespace intermembranaire
70Import des transporteurs métaboliques (ADP, ATP,
Pi, ) dans la membrane interne
- 35 protéines différentes chez la levure
- protéines transmembranaires à plusieurs passages
- sans séquence terminale clivable mais des
séquences internes - traversée par TOM
- puis insertion dans la membrane interne par TIM
22 - nécessite le gradient mais ni ATP ni hsp
71Fig 12-29 (D)
- Insertion des protéines multipass dans la
membrane interne
72Import dans la membrane externe
- Membrane externe de la mitochondrie
- ? membrane externe des bactéries
- Riche en porine
- protéine qui forme des pores
- perméable aux ions inorganiques, aux métabolites,
aux petites protéines - empêche le retour des protéines dans le cytosol
- Contient TOM40
- Insertion des protéines du cytosol
- ATP dépendant
- pas de clivage
- pas besoin d'un potentiel de membrane
- signal de translocation séquence d'ancrage ?
73Ciblage des protéines de la mitochondrie
- Post-traductionnelle
- Co-traductionnelle
74Résumé
75Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
- La machine dimportation des protéines
mitochondriales
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
76Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
- Deux modèles de dépliement et de translocation
des préprotéines à travers les membranes
mitochondriales
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
77Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
Matrix Targeting Signal
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
78Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
- Déploiement local et global d'une protéine repliée
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
79Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
- Une roue à cliquet non ciblée ne peut pas initier
le dépliement efficacement
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
80Biogenèse de TOM 40
81Rapaport,D2002
82Pfanner,N2002p400
- Assemblage du complexe de la membrane externe
- Recyclage continu entre le complexe TOM mature et
l'intermédiaire d'assemblage tardif
83Ciblage des protéines de la mitochondrie
- Translocases in the Outer Mitochondrial Membrane
(TOM) - Translocase in the Inner Mitochondrial Membrane
(TIM) - Cf schéma général
84Koehler,CM2000
85Bauer,MF2000
- Import dans la matrice et la membrane interne
Mge1p
86Bauer,MF2000
- Transfert de ADP/ATP carrier (AAC) à travers
lespace inter-membranaire
87Voos,W1999 BBA
88Voos,W1999 BBA
- The mitochondrial protein import machinery of S.
cerevisiae
89Voos,W1999 BBA
90Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase.Nat Rev Mol
Cell Biol 2004 5(7)519-30
- Figure 1 Protein-import pathways for
mitochondrial proteins. Precursor proteins
(brown) with positively charged amino-terminal
presequences, -barrel outer-membrane proteins
(dark green), and multispanning inner-membrane
proteins (blue) with internal targeting signals
are recognized by specific receptors of the
translocase of the outer mitochondrial membrane
(TOM) that is, by Tom20, Tom22 and/or Tom70. Up
to three dimers of Tom70 are recruited per
precursor (each Tom70 structure shown here
represents a dimer). The precursor proteins are
then translocated through the Tom40 pore (the
small Tom proteins of the TOM complex Tom5,
Tom6 and Tom7 are not shown). The TOM complex
contains two or three pores. The -barrel
proteins then require the small Tim proteins
(Tim9Tim10) to guide them through the
intermembrane space, and the sorting and assembly
machinery (SAM complex) for insertion and
assembly into the outer membrane. Outer-membrane
proteins with single transmembrane spans can be
directly inserted into the outer membrane by the
TOM complex. Presequence-containing preproteins
use the presequence translocase of the inner
mitochondrial membrane (the TIM23 complex) for
transport across the inner membrane. Tim23 forms
a pore in the inner membrane. Presequence-containi
ng inner membrane proteins can either be directly
inserted into the inner membrane by the
presequence translocase or be translocated to the
matrix side and exported into the inner
membrane107. It has been reported that the
extreme amino terminus of Tim23 spans the outer
membrane36 (not shown). The membrane potential (
) and the function of the presequence-translocase-
associated import-motor (PAM) complex are
essential for the translocation of
presequence-containing proteins into the matrix.
Mitochondrial heat-shock protein-70 (mtHsp70) is
the central motor component. It cooperates with
Tim44, Pam16 and Pam18 at the inner membrane and
requires the matrix protein Mge1 (mitochondrial
GrpE-related protein-1) for nucleotide exchange.
In the matrix, the mitochondrial processing
peptidase (MPP) cleaves off the presequence.
Multispanning inner-membrane proteins with
internal signals require the Tim9Tim10 complex
for transport across the outer membrane and the
intermembrane space. The insertion of these
proteins into the inner membrane is catalysed by
the twin-pore carrier translocase of the inner
mitochondrial membrane (the TIM22 complex), which
uses the membrane potential as an external
driving force. This translocase contains two
pores.
(presequence-translocase-associated import-motor)
91Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Fig 2
- Figure 2 A hypothetical model for membrane
insertion by the twin-pore translocase.
Multispanning, inner-membrane proteins that have
internal targeting signals are inserted into the
inner membrane by the translocase of the inner
mitochondrial membrane (TIM)22 complex. The steps
of transport can be experimentally dissected in
vitro by modulating the membrane potential ( ).
a In the absence of a membrane potential, the
TIM22 complex is inactivated (red traffic light).
However, initial binding of the precursor to the
translocase from the intermembrane-space side
through the small Tim proteins Tim9Tim10 and
Tim12 can occur. This is the tethering step, and
it resembles a subset of the stage-III-arrested
carrier precursors (Box 4). b At a low membrane
potential (less than 60 mV), the pores of the
translocation machinery are maintained in a
partially-activated state (orange traffic light),
and the low membrane potential is sufficient to
promote the insertion of one precursor loop into
the translocase (the membrane potential exerts an
electrophoretic force on positive charges that
are found in the matrix-exposed loops of the
precursor). This is the docking step, and it
resembles stage IV of carrier import. c A high
membrane potential ( for example, 120 mV)
across the membrane, together with the
recognition of an internal targeting signal in
the precursor, fully activates the translocase
(green traffic light). One pore closes tightly
around the initially inserted terminal hairpin
loop of the precursor, while the second pore
mediates the insertion of the next set of
transmembrane domains. The process leads to
membrane insertion, which occurs by the lateral
opening of the translocase (insertion step).
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
92Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Fig 3
- Figure 3 The transport of multispanning,
inner-membrane proteins that have a presequence.
Presequence-containing, multispanning,
inner-membrane proteins are transported across
the outer membrane through the translocase of the
outer mitochondrial membrane (TOM) complex and
require the presequence translocase (the
translocase of the inner mitochondrial membrane
(TIM)23 complex) for translocation across the
intermembrane space and inner membrane. Both
translocases have to cooperate tightly to promote
precursor translocation. a The absence of a
membrane potential ( ) at the inner membrane,
together with the inactivation of the ATP-driven,
inner-membrane PAM complex (presequence
translocase-associated motor complex), arrests
the precursor in the TOM complex (red traffic
light). The intermembrane-space domain of the
Tom22 receptor stabilizes this transport
intermediate of the precursor in the TOM complex.
b A full membrane potential activates the
membrane integral module of the TIM23 complex and
allows initial precursor insertion into the Tim23
pore. However, this is insufficient to promote
inner-membrane translocation of the precursor
(orange traffic light). If the PAM complex is
inactive, the precursor is maintained in
association with the TOM complex. c Transport
of the precursor across the outer membrane and
the intermembrane space requires both driving
forces of the inner membrane that is, membrane
potential and the force provided by the
ATP-driven PAM complex. The multispanning
proteins can then enter the matrix space and be
exported into the inner membrane107. Mge1,
mitochondrial GrpE-related protein-1 MPP,
mitochondrial processing peptidase mtHsp70,
mitochondrial heat-shock protein-70.
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
93Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Box 2
Le complexe SAM de la membrane mitochondriale
externe
- Box 2 The SAM complex of the mitochondrial
outer membrane - Although a number of components that mediate
matrix-protein transport and inner-membrane
protein sorting have been identified, little is
known about how proteins are sorted into the
outer mitochondrial membrane. However, recent
work has narrowed this gap in our knowledge.
Studies of the transport of outer-membrane
proteins that have several -strands, such as
translocase of the outer mitochondrial membrane
(Tom)40 or porin, have led to the identification
of a novel translocation machinery in the outer
membrane. This SAM complex (sorting and assembly
machinery) is specifically required for the
insertion and assembly of -barrel proteins into
the outer-membrane (see figure). Mas37, a
peripheral outer-membrane protein, was identified
as the first component of the SAM complex. Two
further constituents have been found since
Sam50 (also known as Tob55/Omp85) and Sam35.
Sam50 and Sam35 are both essential for cell
viability, which emphasizes a crucial role for
the SAM complex in mitochondrial biogenesis.
Sam50 is conserved from bacteria to eukaryotes,
which indicates that the mechanism of protein
insertion has been maintained throughout
evolution81-83, 85. Analyses of the biogenesis
pathway of mitochondrial outer-membrane proteins
indicates that they are first translocated across
the outer membrane by the TOM complex and are
then inserted from the intermembrane-space side
with the aid of SAM. This resembles the insertion
pathway for bacterial outer-membrane proteins
(outer-membrane proteins of bacteria are inserted
from the periplasmic side of the membrane).
Interestingly, the 'small Tim' (translocase of
the inner mitochondrial membrane) proteins have
been found to participate in this process by
assisting precursor transport through the
intermembrane space towards the SAM complex.
(Sorting and Assembly Machinery)
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
94Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Box 3
- Box 3 The presequence-translocase-associated
import motor PAM - The transport of proteins across the inner
membrane into the matrix requires two energy
sources the membrane potential ( ) of the
inner membrane (please refer to the main text for
further details) and the activity of the
presequence-translocase-associated import-motor
(PAM) complex. The mitochondrial heat-shock
protein-70 (mtHsp70) is the central component of
the PAM complex and it binds directly to an
incoming, unfolded polypeptide chain87, 88.
Translocase of the inner mitochondrial membrane
(Tim)44, an essential peripheral inner-membrane
protein, functions as a membrane anchor for
mtHsp70 (Refs 8993 see figure). The function of
mtHsp70 has to be tightly regulated to allow it
to cycle between an ADP-bound state and an
ATP-bound state, which correspond to states of
high and low substrate affinity, respectively.
This regulation requires the cooperation of
mtHsp70 with cofactors. DNAJ-LIKE PROTEINS
stimulate ATP hydrolysis by Hsp70 proteins,
whereas a further exchange factor is needed to
induce ADP release. Mitochondrial Mge1
(mitochondrial GrpE-related protein-1)9-11
functions as the exchange factor for mtHsp70,
whereas Tim44 was thought to fulfil a function
that is similar to that of DnaJ-like proteins.
Recently, though, Tim44 was shown to be unable to
stimulate the ATPase activity of mtHsp70 (Refs
94,95). How, then, is the regulated cycling of
mtHsp70 accomplished? - The answer to this problem lies in the discovery
of Pam18 (also known as Tim14)94-96, a new
component of the PAM complex. Pam18, an integral
inner-membrane protein, is associated with the
presequence translocase and exposes a DnaJ-like
domain to the matrix side of the inner membrane
that stimulates the ATPase activity of mtHsp70
(Refs 94,95 see figure). The discovery of Pam18
as a further component of the PAM complex
indicates that previous models of how the motor
translocates polypeptides were premature, because
they were based on only three motor components
(Tim44, mtHsp70 and Mge1). This is further
underlined by the discovery of Pam16 (also known
as Tim16), another essential component of the PAM
complex, which cooperates with Pam18 in mtHsp70
regulation and seems to recruit Pam18 to the
translocation machinery97, 98
The Presequence-translocase-Associated import
Motor
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
95Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Box 4
Les étapes de limportation dans la mitochondrie
- Box 4 The stages of carrier import into
mitochondria - Initial analyses, which started in the 1980s,
showed that the hydrophobic carrier precursors
are post-translationally imported into
mitochondria99 and that their transport into the
inner membrane requires the membrane potential (
) as an external driving force62, 99. Our
subsequent understanding of the transport pathway
came from detailed in vitro import studies, which
allowed the transport pathway to be dissected
into five distinct, successive steps (stages IV
see figure). Each step represents a clearly
discernable transport intermediate along the
import pathway42. - The first step in transport (stage I) represents
the soluble, cytosolic, chaperone-bound form of
the precursor42, 99. Subsequently, at stage II,
the precursor is recognized by receptors on the
cytosolic face of mitochondria100. The carrier
precursor can be arrested at stage II in the
absence of ATP42, 43. For the subsequent
transport of the precursor across the outer
membrane, carrier precursors, as well as
presequence-containing proteins, use the
general-import pore (GIP) complex. The TOM
complex (translocase of the outer mitochondrial
membrane) contains receptor proteins that bind
the targeting signals and direct the precursor
proteins towards this pore-forming core unit or
GIP complex. However, carrier proteins can be
arrested at this transport step if the membrane
potential at the inner membrane is dissipated.
This stage, stage III, was interpreted to
represent the carrier when it is deeply inserted
into the outer-membrane translocase (it is
inaccessible to externally added protease)42 and
is already exposed to the intermembrane space101.
Later it was realized that the stage-III
intermediate is actually a mixture of two
populations one set of precursors interacts
with the 'small Tims' (translocases of the inner
mitochondrial membrane) in association with the
outer membrane, whereas a second set of
precursors is already tethered to the TIM22
complex. - It became clear that the insertion of the
precursor into the inner membrane occurs in a
membrane-potential-dependent manner, but a
pore-forming TIM complex was not considered at
this time. At the inner-membrane insertion step
(stage IV), no stable transport intermediate
could be generated until recently68, so this
stage was initially only inferred from kinetic
analyses42, 43. However, using ionophores to
gradually reduce the membrane potential across
the inner membrane in isolated mitochondria, it
became possible to arrest a carrier precursor in
the TIM22 complex that is, to obtain a stage-IV
intermediate. The insertion process ends with
stage V, which represents the fully
membrane-inserted carrier that has assembled into
a functional dimer.
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
96Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Box 5
- Box 5 Analysing protein insertion into
mitochondrial membranes - Analysing protein insertion into the
mitochondrial membranes is difficult in vivo, as
kinetic analyses and biochemical-fractionation
techniques need to be combined. For mitochondrial
protein transport, an in vitro import system
which imports in-vitro-synthezised, radiolabelled
proteins into isolated mitochondria and uses
blue-native polyacrylamide gel electrophoresis
(BN-PAGE) to address the formation of protein
complexes102-104 has proven helpful (see
figure). The latter technique is especially
suited to the analysis of membrane-protein
complexes that have been solubilized from
membranes. If a radiolabelled, imported protein
assembles into a multiprotein complex or into an
oligomeric form (for example, stage V of carrier
import see figure and Box 4), it is possible to
separate and visualize such complexes on the gel
and therefore to assess the final stage of
transport46, 104. Moreover, in many cases, this
approach has allowed the identification of
intermediates in the transport and assembly
process, as the precursors cooperate with other
proteins during transport and can therefore be
found in different complexes of the pathway at
different kinetic stages24, 46, 68, 70, 80,
82-84, 86 (Box 4). - BN-PAGE has also been found to be a helpful tool
to visualize unknown intermediates in
protein-insertion pathways68, 70, 80, 86. As the
precursors used in the import studies are
imported in vitro, a further level of analysis
can be applied, because the formation of
transport intermediates and of the
membrane-integrated assembled complexes can be
analysed in a time-dependent manner and under
different salt, temperature or energetic
conditions. For example, membrane potential ( )
can be modulated full membrane potential leads
to the membrane insertion and assembly of the
carrier to form a dimer (stage V) dissipation of
the membrane potential arrests the precursor at
stage III of carrier import (but this precursor
is released from its associated components during
BN-PAGE) and a low membrane potential allows the
precursor to be arrested at stage IV, in which it
is found bound to the translocase of the inner
mitochondrial membrane (TIM)22 complex (see
figure)46, 68. One important technical
development that can be used to address the
composition of complexes following BN-PAGE is the
so-called antibody-shift assay. The binding of
antibodies to a component of the protein complex
increases the size of the complex, which can
easily be seen on the gel70, 80, 105, 106.
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30