COMPARTIMENTS DE LA CELLULE ET TRI DES PROT - PowerPoint PPT Presentation

About This Presentation
Title:

COMPARTIMENTS DE LA CELLULE ET TRI DES PROT

Description:

TIM 22 Insertion de certaines prot ines dans la membrane interne dont transporteur de ATP ... Power-stroke model. Stage 3 ... Arrowheads point to tubular regions of ... – PowerPoint PPT presentation

Number of Views:108
Avg rating:3.0/5.0
Slides: 84
Provided by: Bertr173
Category:

less

Transcript and Presenter's Notes

Title: COMPARTIMENTS DE LA CELLULE ET TRI DES PROT


1
COMPARTIMENTS DE LA CELLULE ET TRI DES PROTÉINES
2
COMPARTIMENTS DE LA CELLULE ET TRI DES PROTÉINES
  • III - Transport des protéines dans les
    mitochondries et les chloroplastes

3
A - Rappels sur la mitochondrie
  • Structure
  • Les compartiments
  • ADN mitochondrial (traité ailleurs)

4
Frey,TG2000 (fig1)
  • Schéma classique

5
Les compartiments(Capaldi,RA (2002) BBA1555p192)
  • Trois compartiments membranaires
  • Membrane externe
  • Membrane interne
  • Crêtes
  • Trois espaces
  • Espace intermembranaire
  • Espaces "intracristal"
  • Matrice

6
Morphologie
  • Forme et distribution variables
  • Variable en fonction du stade du cycle cellulaire
  • petit organite ovoïde en phase S et M
  • réticulaire en G0
  • Modèle de Palade (1952) 2 membranes, modèle
    retenu dans les livres
  • Modèle de Sjöstrand (1956) 3 membranes

7
"Computer Axial Tomography (CAR) scan" 60 à
120 images à 1 ou 2 de -60 à 60
  • Crêtes reliées à la membrane interne par des
    tubules de 28 6 nm

8
Frey,TG2002p196(fig1)
Une des coupes de a ? aspect tubulaires des
jonctions crête membrane interne
ME 0,5? à 400 kV ? Jonctions tubulaires des
crêtes
La même mitochondrie
  • Modèle 3D
  • Membrane externe
  • Membrane interne
  • Crêtes

4 crêtes de 4 couleurs différentes jonctions
tubulaires
http//www.sci.sdsu.edu/TFrey/MitoMovie.htm
9
Frey,TG2002p196(fig2)
  • a - Même mitochondrie crêtes avec les jonctions
    en rouge
  • b - Modèle idéalisé de jonction crête - membrane

10
Frey,TG2000 (fig3)
  • Computer models generated from segmented 3D
    tomograms of a mitochondrion in chick cerebellum.
    (a) The entire model showing all cristae in
    yellow, the inner boundary membrane in light
    blue, and the outer membrane in dark blue. (b)
    Outer membrane, inner boundary membrane and four
    representative cristae in different colors.
    Quicktime videos of these models can be found at
    http//www.sci.sdsu.edu/tfrey/mitomovie.htm

11
Frey,TG2000 (fig5)
  • Amibe crêtes paracristallines

12
Frey,TG2000 (fig2)
  • Foie de rat (normal)

Contacts OM/IM
13
Griparic,L2001Traffic
Myopathie mitochondriale
  • Reconstruction 3-D d une mitochondrie par
    tomographie électronique
  • Suspension de mitochondries congelée,
    cryomicroscopie électronique, tomographie
    assistée par ordinateur

Rouge membrane interne
Autres couleurs crêtes
14
Frey,TG2002p196(fig3)
  • Mitochondrie de Xenope
  • Mitochondrie ayant perdu son cytochrome c
  • Mitochondrie n'ayant pas perdu son cytochrome c
  • Mitochondrie avec Ca augmenté

15
En vidéo microscopie
  • Dynamique sauts sur de petits mouvements plus
    continus
  • Intervention des microtubules et microfilaments
  • http//www.sci.sdsu.edu/TFrey/MitoMovie.htm

16
Griparic,L2001Traffic
  • Distribution typique des mitochondries dans une
    cellule de mammifère en culture (myoblaste de
    souris observé in vivo par le colorant vital
    MitoTracker)

17
Griparic,L2001Traffic
  • Réseau de mitochondries dans une cellule
    musculaire de C. elegans mutée.
  • Le blocage de la division de la membrane externe
    favorise la fusion des mitochondries aboutissant
    à un réseau.
  • La membrane interne continue à se diviser.
  • Vert membrane mitochondriale ext
  • Rouge matrice mitochondriale
  • Cellules vivantes (GFP)

18
Griparic,L2001Traffic
  • Crêtes mitochondriales de cellules de cortex
    surrénalien.
  • A - Rat traîté par corticotropin-releasing
    hormone, (qui stimule la production de stéroïdes)
    les crêtes sont tubulaires.
  • B - Cellule de la zone fasciculée aves des
    crêtes vésiculaires.

19
Griparic,L2001Traffic
  • Inclusions paracristallines dans les
    mitochondries dun enfant atteint de myopathie.
  • Mitochondries géantes avec des inclusions
    paracristallines qui seraient des crêtes de la
    membrane interne.
  • Se retrouve dans dautres situations
    pathologiques.

20
Frey,TG2000 (fig6)
  • Model of a mitochondrion displaying highly
    abnormal internal compartmentation from a patient
    with a mitochondrial myopathy. The mitochondrion
    contains numerous small vesicles (luminous green)
    that do not connect to the inner boundary
    membrane (blue). There is a second large internal
    membrane (green), which has a vesicle-like
    protrusion, suggesting either that this unusual
    membrane is formed by fusion of the vesicles or,
    conversely, that the vesicles are formed by
    budding from it. Reproduced, with permission,
    from M. Huizing.

Myopathie mitochondriale
21
Rappel de quelques fonctions
  • Production d'énergie
  • Régulation du calcium intracellulaire
  • Oxydation des acides gras
  • Synthèse des stéroïdes
  • Apoptose

22
Localisation des protéines
  • La plupart dans un seul compartiment
  • Exceptions (crêtes membrane interne)
  • Enzymes de la chaîne respiratoire
  • ATP synthétase

23
Constitution biochimique
  • Environ 1000 protéines différentes

24
Biogenèse
  • Croissance dorganites préexistant
  • Suivie de fission ?
  • Nécessité dimportation de nouvelles protéines

25
Capaldi,RA (2002) BBA1555p192
  • Genèse par fragmentation du reticulum
    mitochondrial
  • Marquage avec GFP-Pyruvate deshydrogénase
  • Mitotraker marque le réseau mitochondrial

26
Griparic,L2001Traffic
Cellule musculaire cardiaque de souris normale
Adipocyte de papillon(Calpodes ethlius)
  • Clivage de la membrane mitochondriale interne
    sans division de la mb externe

27
B - TRANSPORT DES PROTÉINES DANS LES
MITOCHONDRIES ET LES CHOLOROPLASTES
28
Schéma du routage
29
Schéma du routage partiel
30
Mitochondrie (rappel)
  • Double membrane
  • Synthèse d'ATP
  • par transport d'électrons et phosphorylation
    oxydative (mitochondrie)
  • par photosynthèse phosphorylante (chloroplaste)
  • Contiennent leur ADN et leur machine à synthèse
    protéique
  • La plupart de leur protéines est codée par le
    noyau

31
Les compartiments de la mitochondrie
  • Jeu de protéines différent (1000 protéines
    différentes dans la mitochondrie)
  • ? translocation sélective de 1 ou 2 membranes
  • Les protéines codées par la mitochondrie sont
    dans la membrane interne
  • Coordination des 2 types de protéines ?
  • Mitochondriales (13 protéines connues de la
    chaîne respiratoire)
  • nucléaires (les autres)

32
Fig 12-22
Les 2 compartiments de la mitochondrie
Les 3 compartiments du chloroplaste
33
Import dans la matrice(et membrane
mitochondriale externe)
  • Protéines de fusion chez la levure
  • Import post-traductionnel (quelques secondes ou
    minutes)
  • Séquence Signal
  • à lextrémité -N
  • rapidement retiré (signal peptidase)
  • hélice ? amphiphile
  • AA d un côté de lhélice
  • AA - de lautre côté de lhélice
  • reconnu par des récepteurs spécifiques

34
Fig 12-23
  • Séquence signal pour l'import d'une protéine
    mitochondriale
  • eg Cytochrome oxydase du complex IV
  • Matrix Targeting Signal

1
5
9
12
12
16
Hélice ? de 3,6 résidus par tour
?

35
Les translocateurs TOM TIM
  • Complexes protéiques
  • Translocator of the Outer Membrane (TOM40)
  • Translocators of the Inner Membrane (TIM)
  • TIM23
  • TIM22
  • 2 fonctions
  • récepteur pour les protéines mitochondriales
    précurseur
  • canal translocateur

36
Au total 3 complexes
  1. TOM 40
  2. TIM 23
  3. TIM 22

37
Pfanner,N2002p400(fig1)
  • Les deux grandes voies d'importation des
    protéines mitochondriales
  • Préprotéines à signal qui sera retiré par MPP
    (Mitochondrial Processing Peptidase)
  • Précurseur des protéines hydrophobes

38
1 . TOM
  • Import de toutes les protéines mitochondriales
    codées par le noyau
  • Comprend le "General Import Pore" (GIP)
  • Transporte le signal dans lespace
    intermembranaire
  • Aide à linsertion des protéines
    transmembranaires dans la membrane externe (on
    nen reparlera plus)

39
Rapaport,D2002
  • Complexe TOM

Récepteurs TOM 20, 22,70
Pore TOM 5, 6 ,7 , 20, 22 ,40
40
Pfanner,N2002p400(fig2)
  • Système de translocation de la membrane externe
    de la mitochondrie
  • TOM
  • TOM 20 avec une séquence liée (hélice ?)
  • GIP TOM 40, 22, 7, 6, 5, 20

41
TOM 40
  • Forme le canal aqueux (de 20 nm) du GIP (General
    Import Pore)
  • Utilisé par les deux voies de transport
  • L'entrée se fait sous forme d'une boucle
  • Associé à TOM 20, TOM 22, TOM 70 et TOM 5, TOM 6,
    TOM 7

42
2 . TIM 23
  • TIM 17,23,44 mtHsp70 co-chaperone Mge1
  • Transport de certaines protéines dans la matrice
  • Insertion de protéines transmembranaires dans la
    membrane interne

43
Pfanner,N2002p400(fig4)
  • The Mitochondrial presequence translocase and the
    Processing Peptidase (MPP). (a) The presequence
    translocase consists of an innermembrane-
    integrated pore complex (the Tim23 complex) and
    the peripherally attached import motor at the
    matrix side. Tim23 and Tim17 form a stable
    complex in the inner membrane (IM). The amino
    terminus of Tim23 in the intermembrane space
    (IMS) is important for recognising the
    presequences as they emerge from the TOM complex,
    whereas the carboxy-terminal membrane-integrated
    domain of Tim23 forms a channel for preproteins.
    This channel is activated by the membrane
    potential (??), which also exerts a pulling force
    on the positively charged presequence. The import
    motor consists of mtHsp70, the membrane-associated
    protein Tim44, and the homodimeric co-chaperone
    mitochondrial GrpE (Mge1, a nucleotide exchange
    factor). The motor is driven by hydrolysis of
    ATP. The heterodimeric MPP cleaves the
    presequences. (b) The MPP binds the presequences
    in an extended conformation in a large central
    cavity between the ? and ? subunits (the
    encircled area of MPP of a is shown modelled
    after the structure of yeast MPP). MPP? binds the
    conserved hydrophobic (hydro) sidechain of the
    first amino acid residue of the mature protein in
    a hydrophobic pocket that includes a
    phenylalanine (Phe77). The conserved, positively
    charged arginine residue in the 2 position is
    bound by negatively charged residues (Glu160 and
    Asp164) on MPP?. This brings the scissile peptide
    bond (arrow) close to the essential active-site
    zinc ion. The preprotein with the presequence is
    shown in red and blue. Amino acid residues in
    green belong to MPP? (the numbering starts with
    residue 1 of the preprotein of Saccharomyces
    cerevisiae MPP?).

44
3 . TIM 22
  • Insertion de certaines protéines dans la membrane
    interne dont
  • transporteur de ATP, ADP, Pi

45
Pfanner,N2002p400(fig5)
  • Import stages of hydrophobic membrane proteins to
    the mitochondrial inner membrane
  • Stage I Cytosolic chaperones bind to the
    precursor of a carrier protein (used here as an
    example of a membrane protein) and keep it in an
    import-competent state
  • Stage II The precursor protein is bound by
    several Tom70 receptor molecules. The precursor
    is then released in an ATP-dependent step and
    transferred to the GIP.
  • Stage III The precursor protein is translocated
    in a loop formation through the GIP and binds to
    the Tim9Tim10 complex (via hydrophobic regions
    of the precursor)
  • Stage IV Membrane integration of the carrier
    precursor by the protein insertion complex (Tim22
    complex) of the inner membrane depends on the
    membrane potential (?ø
  • Stage V The carrier protein assembles to the
    mature homodimer in the inner membrane.

46
Complexe OXA
  • Translocateur dans la membrane interne, de
    protéines synthétisées dans la mitochondrie
  • Aide à l'insertion transmembranaire (interne) de
    protéines transportées initialement dans la
    matrice

47
Fig 12-24
  • les 3 translocateurs dans les membranes
    mitochondriales

?
48
Koehler,CM2000
Import des protéines et voies d'exportation dans
la mitochondrie
49
Les protéines précurseurs mitochondriales sont
importées sous forme de polypeptides non repliés
  • Analyse à partir de systèmes sans cellule
  • Des protéines cytosoliques empêchent les
    protéines mitochondriales de se replier sous leur
    forme native
  • sont le plus souvent des protéines chaperones
    (appartenant à la famille des hsp 70)
  • sont parfois spécifiques de leur signal
  • puis sont retirées avant l'engagement dans le TOM

50
Passage dans la matrice deux hypothèses
  • Traverser deux membranes
  • Traverser les deux membranes en même temps

51
Fig 12-25
  • Protocole expérimental
  • la translocation se fait en deux étapes
  • les deux membranes sont traversées en même temps

52
Passage dans la matrice conclusion
  • Traversée des deux membranes en même temps en
    deux étapes
  • entrée du signal dans l'espace intermembranaire
    par TOM
  • liaison du signal par TIM
  • soit entrée dans la matrice
  • soit entrée dans la membrane interne
  • Présence de sites de contacts entre les deux
    membranes
  • TOM et TIM peuvent fonctionner indépendamment les
    uns des autres expérimentalement

53
Fig 12-26
  • Import des protéines dans la matrice

4 étapes
54
Deux conditions pour diriger l'import des
protéines dans la mitochondrie
  • Hydrolyse de l ATP
  • en dehors de la mitochondrie
  • et dans la matrice
  • Gradient électrochimique dions H de part et
    dautre de la membrane interne
  • pompage dions H à travers la membrane interne
    ce gradient ne sert pas quà la synthèse dATP
  • la membrane externe est perméable aux ions en
    raison de la présence de porine (comme les
    bacilles gram -) ? pas de gradient

55
Aspect énergétique de la translocation
  • Libération des hsp 70 cytosoliques hors de la
    protéine ? ATP
  • Translocation à travers un TIM ? gradient H
  • Libération des hsp 70 mitochondriales hors de la
    protéine ? ATP

56
Fig 12-27
Nécessité -du gradient électrochimique à
travers la membrane interne et de -l'hydrolyse
de l'ATP pour limportation dans la matrice
mitochondriale
57
Les hsp 70
  • Cytosoliques
  • Mitochondriales
  • Se lient aux protéines non repliées
  • Nécessitent de lATP pour se détacher
  • Fournit finalement lénergie pour la
    translocation par TIM 23
  • Sont intimement associés à TIM 23

58
Les deux modèles énergétiques dimportation
  •  Roue à cliquet  thermique aller-retour
    thermique dans le canal de TIM23
  •  Roue à cliquet  ponté changement de
    conformation de hsp 70 qui tire sur la chaîne
  • Dans les deux cas
  •  Roue à cliquet  qui empêche le retour de la
    protéine
  • liaison de hsp 70 à TIM 23

59
Fig 12-28 (A)
  •  Roue à cliquet  thermique

60
Fig 12-28 (B)
  •  Roue à cliquet  ponté

61
Changement de hsp
  • Les hsp 70 mitochondriales sont remplacées par
    des hsp 60 mitochondriales dans la matrice

62
Transport dans la membrane mitochondriale interne
et espace intermembranaire
  • Même mécanisme au départ que pour la matrice
  • Deux voies
  • a - passage par la matrice
  • b - pas de passage par la matrice

63
Fig 12-26
  • Même mécanisme au départ que pour matrice

4 étapes
64
a - Passage par la matrice
  • Le premier signal peptide est retiré (par une
    signal peptidase matricielle spécifique)
  • 2ème signal peptide hydrophobe
  • Transloque la protéine de la matrice
  • dans la membrane mitochondriale interne ou
  • à travers la membrane mitochondriale interne
  • Utilise le complexe OXA comme translocateur

65
Fig 12-29 (A)
  • a - passage par la matrice

66
b - pas de passage par la matrice
  • Le 2ème signal se comporte comme un signal stop
    de transfert (pour TOM)
  • ce qui arrête la translocation à travers la
    membrane interne
  • Clivage du 1er signal peptide
  • Glissement de TOM et poursuite de la
    translocation à travers TOM

67
Fig 12-29 (B)
  • b - pas de passage par la matrice

68
Transport dans lespace intermembranaire
  • Même mécanisme au départ que pour matrice
  • Deux voies
  • passage par la matrice
  • pas de passage par la matrice
  • ? insertion dans la membrane interne (id. supra)
  • Action dune peptidase spécifique
  • Libération de la protéine soluble

69
Fig 12-29 (C)
  • Transport dans lespace intermembranaire

70
Import des transporteurs métaboliques (ADP, ATP,
Pi, ) dans la membrane interne
  • 35 protéines différentes chez la levure
  • protéines transmembranaires à plusieurs passages
  • sans séquence terminale clivable mais des
    séquences internes
  • traversée par TOM
  • puis insertion dans la membrane interne par TIM
    22
  • nécessite le gradient mais ni ATP ni hsp

71
Fig 12-29 (D)
  • Insertion des protéines multipass dans la
    membrane interne

72
Import dans la membrane externe
  • Membrane externe de la mitochondrie
  • ? membrane externe des bactéries
  • Riche en porine
  • protéine qui forme des pores
  • perméable aux ions inorganiques, aux métabolites,
    aux petites protéines
  • empêche le retour des protéines dans le cytosol
  • Contient TOM40
  • Insertion des protéines du cytosol
  • ATP dépendant
  • pas de clivage
  • pas besoin d'un potentiel de membrane
  • signal de translocation séquence d'ancrage ?

73
Ciblage des protéines de la mitochondrie
  • Post-traductionnelle
  • Co-traductionnelle

74
Résumé
75
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
  • La machine dimportation des protéines
    mitochondriales

Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
76
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
  • Deux modèles de dépliement et de translocation
    des préprotéines à travers les membranes
    mitochondriales

Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
77
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
  • Dépliement sans traction

Matrix Targeting Signal
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
78
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
  • Déploiement local et global d'une protéine repliée

Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
79
Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
  • Une roue à cliquet non ciblée ne peut pas initier
    le dépliement efficacement

Neuperts,W Nature Reviews Molecular Cell Biology
3, 555 -565 (2002)
80
Biogenèse de TOM 40
81
Rapaport,D2002
  • Assemblage de TOM 40

82
Pfanner,N2002p400
  • Assemblage du complexe de la membrane externe
  • Recyclage continu entre le complexe TOM mature et
    l'intermédiaire d'assemblage tardif

83
Ciblage des protéines de la mitochondrie
  • Translocases in the Outer Mitochondrial Membrane
    (TOM)
  • Translocase in the Inner Mitochondrial Membrane
    (TIM)
  • Cf schéma général

84
Koehler,CM2000
85
Bauer,MF2000
  • Import dans la matrice et la membrane interne

Mge1p
86
Bauer,MF2000
  • Transfert de ADP/ATP carrier (AAC) à travers
    lespace inter-membranaire

87
Voos,W1999 BBA
88
Voos,W1999 BBA
  • The mitochondrial protein import machinery of S.
    cerevisiae

89
Voos,W1999 BBA
90
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase.Nat Rev Mol
Cell Biol 2004 5(7)519-30
  • Figure 1  Protein-import pathways for
    mitochondrial proteins.   Precursor proteins
    (brown) with positively charged amino-terminal
    presequences, -barrel outer-membrane proteins
    (dark green), and multispanning inner-membrane
    proteins (blue) with internal targeting signals
    are recognized by specific receptors of the
    translocase of the outer mitochondrial membrane
    (TOM) that is, by Tom20, Tom22 and/or Tom70. Up
    to three dimers of Tom70 are recruited per
    precursor (each Tom70 structure shown here
    represents a dimer). The precursor proteins are
    then translocated through the Tom40 pore (the
    small Tom proteins of the TOM complex Tom5,
    Tom6 and Tom7 are not shown). The TOM complex
    contains two or three pores. The -barrel
    proteins then require the small Tim proteins
    (Tim9Tim10) to guide them through the
    intermembrane space, and the sorting and assembly
    machinery (SAM complex) for insertion and
    assembly into the outer membrane. Outer-membrane
    proteins with single transmembrane spans can be
    directly inserted into the outer membrane by the
    TOM complex. Presequence-containing preproteins
    use the presequence translocase of the inner
    mitochondrial membrane (the TIM23 complex) for
    transport across the inner membrane. Tim23 forms
    a pore in the inner membrane. Presequence-containi
    ng inner membrane proteins can either be directly
    inserted into the inner membrane by the
    presequence translocase or be translocated to the
    matrix side and exported into the inner
    membrane107. It has been reported that the
    extreme amino terminus of Tim23 spans the outer
    membrane36 (not shown). The membrane potential (
    ) and the function of the presequence-translocase-
    associated import-motor (PAM) complex are
    essential for the translocation of
    presequence-containing proteins into the matrix.
    Mitochondrial heat-shock protein-70 (mtHsp70) is
    the central motor component. It cooperates with
    Tim44, Pam16 and Pam18 at the inner membrane and
    requires the matrix protein Mge1 (mitochondrial
    GrpE-related protein-1) for nucleotide exchange.
    In the matrix, the mitochondrial processing
    peptidase (MPP) cleaves off the presequence.
    Multispanning inner-membrane proteins with
    internal signals require the Tim9Tim10 complex
    for transport across the outer membrane and the
    intermembrane space. The insertion of these
    proteins into the inner membrane is catalysed by
    the twin-pore carrier translocase of the inner
    mitochondrial membrane (the TIM22 complex), which
    uses the membrane potential as an external
    driving force. This translocase contains two
    pores.

(presequence-translocase-associated import-motor)
91
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Fig 2
  • Figure 2  A hypothetical model for membrane
    insertion by the twin-pore translocase.  
    Multispanning, inner-membrane proteins that have
    internal targeting signals are inserted into the
    inner membrane by the translocase of the inner
    mitochondrial membrane (TIM)22 complex. The steps
    of transport can be experimentally dissected in
    vitro by modulating the membrane potential ( ).
    a In the absence of a membrane potential, the
    TIM22 complex is inactivated (red traffic light).
    However, initial binding of the precursor to the
    translocase from the intermembrane-space side
    through the small Tim proteins Tim9Tim10 and
    Tim12 can occur. This is the tethering step, and
    it resembles a subset of the stage-III-arrested
    carrier precursors (Box 4). b At a low membrane
    potential (less than 60 mV), the pores of the
    translocation machinery are maintained in a
    partially-activated state (orange traffic light),
    and the low membrane potential is sufficient to
    promote the insertion of one precursor loop into
    the translocase (the membrane potential exerts an
    electrophoretic force on positive charges that
    are found in the matrix-exposed loops of the
    precursor). This is the docking step, and it
    resembles stage IV of carrier import. c A high
    membrane potential ( for example, 120 mV)
    across the membrane, together with the
    recognition of an internal targeting signal in
    the precursor, fully activates the translocase
    (green traffic light). One pore closes tightly
    around the initially inserted terminal hairpin
    loop of the precursor, while the second pore
    mediates the insertion of the next set of
    transmembrane domains. The process leads to
    membrane insertion, which occurs by the lateral
    opening of the translocase (insertion step).

Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
92
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Fig 3
  • Figure 3  The transport of multispanning,
    inner-membrane proteins that have a presequence.
      Presequence-containing, multispanning,
    inner-membrane proteins are transported across
    the outer membrane through the translocase of the
    outer mitochondrial membrane (TOM) complex and
    require the presequence translocase (the
    translocase of the inner mitochondrial membrane
    (TIM)23 complex) for translocation across the
    intermembrane space and inner membrane. Both
    translocases have to cooperate tightly to promote
    precursor translocation. a The absence of a
    membrane potential ( ) at the inner membrane,
    together with the inactivation of the ATP-driven,
    inner-membrane PAM complex (presequence
    translocase-associated motor complex), arrests
    the precursor in the TOM complex (red traffic
    light). The intermembrane-space domain of the
    Tom22 receptor stabilizes this transport
    intermediate of the precursor in the TOM complex.
    b A full membrane potential activates the
    membrane integral module of the TIM23 complex and
    allows initial precursor insertion into the Tim23
    pore. However, this is insufficient to promote
    inner-membrane translocation of the precursor
    (orange traffic light). If the PAM complex is
    inactive, the precursor is maintained in
    association with the TOM complex. c Transport
    of the precursor across the outer membrane and
    the intermembrane space requires both driving
    forces of the inner membrane that is, membrane
    potential and the force provided by the
    ATP-driven PAM complex. The multispanning
    proteins can then enter the matrix space and be
    exported into the inner membrane107. Mge1,
    mitochondrial GrpE-related protein-1 MPP,
    mitochondrial processing peptidase mtHsp70,
    mitochondrial heat-shock protein-70.

Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
93
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Box 2
Le complexe SAM de la membrane mitochondriale
externe
  • Box 2 The SAM complex of the mitochondrial
    outer membrane 
  • Although a number of components that mediate
    matrix-protein transport and inner-membrane
    protein sorting have been identified, little is
    known about how proteins are sorted into the
    outer mitochondrial membrane. However, recent
    work has narrowed this gap in our knowledge.
    Studies of the transport of outer-membrane
    proteins that have several -strands, such as
    translocase of the outer mitochondrial membrane
    (Tom)40 or porin, have led to the identification
    of a novel translocation machinery in the outer
    membrane. This SAM complex (sorting and assembly
    machinery) is specifically required for the
    insertion and assembly of -barrel proteins into
    the outer-membrane (see figure). Mas37, a
    peripheral outer-membrane protein, was identified
    as the first component of the SAM complex. Two
    further constituents have been found since
    Sam50 (also known as Tob55/Omp85) and Sam35.
    Sam50 and Sam35 are both essential for cell
    viability, which emphasizes a crucial role for
    the SAM complex in mitochondrial biogenesis.
    Sam50 is conserved from bacteria to eukaryotes,
    which indicates that the mechanism of protein
    insertion has been maintained throughout
    evolution81-83, 85. Analyses of the biogenesis
    pathway of mitochondrial outer-membrane proteins
    indicates that they are first translocated across
    the outer membrane by the TOM complex and are
    then inserted from the intermembrane-space side
    with the aid of SAM. This resembles the insertion
    pathway for bacterial outer-membrane proteins
    (outer-membrane proteins of bacteria are inserted
    from the periplasmic side of the membrane).
    Interestingly, the 'small Tim' (translocase of
    the inner mitochondrial membrane) proteins have
    been found to participate in this process by
    assisting precursor transport through the
    intermembrane space towards the SAM complex.

(Sorting and Assembly Machinery)
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
94
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Box 3
  • Box 3 The presequence-translocase-associated
    import motor PAM 
  • The transport of proteins across the inner
    membrane into the matrix requires two energy
    sources the membrane potential ( ) of the
    inner membrane (please refer to the main text for
    further details) and the activity of the
    presequence-translocase-associated import-motor
    (PAM) complex. The mitochondrial heat-shock
    protein-70 (mtHsp70) is the central component of
    the PAM complex and it binds directly to an
    incoming, unfolded polypeptide chain87, 88.
    Translocase of the inner mitochondrial membrane
    (Tim)44, an essential peripheral inner-membrane
    protein, functions as a membrane anchor for
    mtHsp70 (Refs 8993 see figure). The function of
    mtHsp70 has to be tightly regulated to allow it
    to cycle between an ADP-bound state and an
    ATP-bound state, which correspond to states of
    high and low substrate affinity, respectively.
    This regulation requires the cooperation of
    mtHsp70 with cofactors. DNAJ-LIKE PROTEINS
    stimulate ATP hydrolysis by Hsp70 proteins,
    whereas a further exchange factor is needed to
    induce ADP release. Mitochondrial Mge1
    (mitochondrial GrpE-related protein-1)9-11
    functions as the exchange factor for mtHsp70,
    whereas Tim44 was thought to fulfil a function
    that is similar to that of DnaJ-like proteins.
    Recently, though, Tim44 was shown to be unable to
    stimulate the ATPase activity of mtHsp70 (Refs
    94,95). How, then, is the regulated cycling of
    mtHsp70 accomplished?
  • The answer to this problem lies in the discovery
    of Pam18 (also known as Tim14)94-96, a new
    component of the PAM complex. Pam18, an integral
    inner-membrane protein, is associated with the
    presequence translocase and exposes a DnaJ-like
    domain to the matrix side of the inner membrane
    that stimulates the ATPase activity of mtHsp70
    (Refs 94,95 see figure). The discovery of Pam18
    as a further component of the PAM complex
    indicates that previous models of how the motor
    translocates polypeptides were premature, because
    they were based on only three motor components
    (Tim44, mtHsp70 and Mge1). This is further
    underlined by the discovery of Pam16 (also known
    as Tim16), another essential component of the PAM
    complex, which cooperates with Pam18 in mtHsp70
    regulation and seems to recruit Pam18 to the
    translocation machinery97, 98

The Presequence-translocase-Associated import
Motor
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
95
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Box 4
Les étapes de limportation dans la mitochondrie
  • Box 4 The stages of carrier import into
    mitochondria 
  • Initial analyses, which started in the 1980s,
    showed that the hydrophobic carrier precursors
    are post-translationally imported into
    mitochondria99 and that their transport into the
    inner membrane requires the membrane potential (
    ) as an external driving force62, 99. Our
    subsequent understanding of the transport pathway
    came from detailed in vitro import studies, which
    allowed the transport pathway to be dissected
    into five distinct, successive steps (stages IV
    see figure). Each step represents a clearly
    discernable transport intermediate along the
    import pathway42.
  • The first step in transport (stage I) represents
    the soluble, cytosolic, chaperone-bound form of
    the precursor42, 99. Subsequently, at stage II,
    the precursor is recognized by receptors on the
    cytosolic face of mitochondria100. The carrier
    precursor can be arrested at stage II in the
    absence of ATP42, 43. For the subsequent
    transport of the precursor across the outer
    membrane, carrier precursors, as well as
    presequence-containing proteins, use the
    general-import pore (GIP) complex. The TOM
    complex (translocase of the outer mitochondrial
    membrane) contains receptor proteins that bind
    the targeting signals and direct the precursor
    proteins towards this pore-forming core unit or
    GIP complex. However, carrier proteins can be
    arrested at this transport step if the membrane
    potential at the inner membrane is dissipated.
    This stage, stage III, was interpreted to
    represent the carrier when it is deeply inserted
    into the outer-membrane translocase (it is
    inaccessible to externally added protease)42 and
    is already exposed to the intermembrane space101.
    Later it was realized that the stage-III
    intermediate is actually a mixture of two
    populations one set of precursors interacts
    with the 'small Tims' (translocases of the inner
    mitochondrial membrane) in association with the
    outer membrane, whereas a second set of
    precursors is already tethered to the TIM22
    complex.
  • It became clear that the insertion of the
    precursor into the inner membrane occurs in a
    membrane-potential-dependent manner, but a
    pore-forming TIM complex was not considered at
    this time. At the inner-membrane insertion step
    (stage IV), no stable transport intermediate
    could be generated until recently68, so this
    stage was initially only inferred from kinetic
    analyses42, 43. However, using ionophores to
    gradually reduce the membrane potential across
    the inner membrane in isolated mitochondria, it
    became possible to arrest a carrier precursor in
    the TIM22 complex that is, to obtain a stage-IV
    intermediate. The insertion process ends with
    stage V, which represents the fully
    membrane-inserted carrier that has assembled into
    a functional dimer.

Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
96
Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30. Box 5
  • Box 5 Analysing protein insertion into
    mitochondrial membranes 
  • Analysing protein insertion into the
    mitochondrial membranes is difficult in vivo, as
    kinetic analyses and biochemical-fractionation
    techniques need to be combined. For mitochondrial
    protein transport, an in vitro import system
    which imports in-vitro-synthezised, radiolabelled
    proteins into isolated mitochondria and uses
    blue-native polyacrylamide gel electrophoresis
    (BN-PAGE) to address the formation of protein
    complexes102-104 has proven helpful (see
    figure). The latter technique is especially
    suited to the analysis of membrane-protein
    complexes that have been solubilized from
    membranes. If a radiolabelled, imported protein
    assembles into a multiprotein complex or into an
    oligomeric form (for example, stage V of carrier
    import see figure and Box 4), it is possible to
    separate and visualize such complexes on the gel
    and therefore to assess the final stage of
    transport46, 104. Moreover, in many cases, this
    approach has allowed the identification of
    intermediates in the transport and assembly
    process, as the precursors cooperate with other
    proteins during transport and can therefore be
    found in different complexes of the pathway at
    different kinetic stages24, 46, 68, 70, 80,
    82-84, 86 (Box 4).
  • BN-PAGE has also been found to be a helpful tool
    to visualize unknown intermediates in
    protein-insertion pathways68, 70, 80, 86. As the
    precursors used in the import studies are
    imported in vitro, a further level of analysis
    can be applied, because the formation of
    transport intermediates and of the
    membrane-integrated assembled complexes can be
    analysed in a time-dependent manner and under
    different salt, temperature or energetic
    conditions. For example, membrane potential ( )
    can be modulated full membrane potential leads
    to the membrane insertion and assembly of the
    carrier to form a dimer (stage V) dissipation of
    the membrane potential arrests the precursor at
    stage III of carrier import (but this precursor
    is released from its associated components during
    BN-PAGE) and a low membrane potential allows the
    precursor to be arrested at stage IV, in which it
    is found bound to the translocase of the inner
    mitochondrial membrane (TIM)22 complex (see
    figure)46, 68. One important technical
    development that can be used to address the
    composition of complexes following BN-PAGE is the
    so-called antibody-shift assay. The binding of
    antibodies to a component of the protein complex
    increases the size of the complex, which can
    easily be seen on the gel70, 80, 105, 106.

Rehling P, Brandner K, Pfanner N. Mitochondrial
import and the twin-pore translocase. Nat Rev
Mol Cell Biol 2004 5(7)519-30
Write a Comment
User Comments (0)
About PowerShow.com