Ch 14: Phase Equilibria - PowerPoint PPT Presentation

1 / 11
About This Presentation
Title:

Ch 14: Phase Equilibria

Description:

Ch 14: Phase Equilibria I. Condensed Phase Vapor II. TR: Eqns Vi. and Vj. III. More Cycles IV. Surface Tension – PowerPoint PPT presentation

Number of Views:147
Avg rating:3.0/5.0
Slides: 12
Provided by: Bili155
Category:
Tags: equilibria | phase

less

Transcript and Presenter's Notes

Title: Ch 14: Phase Equilibria


1
Ch 14 Phase Equilibria
  • I. Condensed Phase ? Vapor
  • II. TR Eqns Vi. and Vj.
  • III. More Cycles
  • IV. Surface Tension

2
I. Condensed Ph. ? Vapor
  • At constant T and p, the Extremum Principle
    states that equilibrium is associated with ?G 0
  • ? µc µv Recall Example 7.5
  • If gas is ideal, µv kT ln (p/pint0) Eqn 11.50

3
Use Lattice Model for Condensed Phase
  • Treat liquids and solids the same (ie ignore long
    range forces in solids)
  • ?Strans 0 (condensed phase atoms held in
    place)
  • ?F ?U f(trans only)
  • Let attractive interaction energy wAA which is
    negative and independent of T.

4
Use Lattice Model for Condensed Phase
  • Assume N atoms each with z nearest neighbors
    (n.n.), ??F ?U Nz wAA/2 Eqn 14.6
  • µc (?F/?N)T,V z wAA/2 Eqn 10.41
  • µc µv ? p pint0 exp (z wAA/2kT)
  • Creating cavities or holes in a cond. ph.
    (?Uremove), closing the hole (?Uclose) and
    opening the hole(?Uopen - ?Uclose).

5
II. Phase Equilibrium Eqns (TR)
  • Clapeyron Eqn general phase equil eqn
  • At constant T and p, dG -TdS V dp is the
    indicator for equilibrium.
  • Since µ partial molar G, µ can be used.
  • dµ -sdT vdp
  • Consider liquid ? vapor or µl µv
  • dp/dT ?s/?v ?h/T ?v Eqn Vi (TR)
  • Applies to s ? l v ? l s ? v, s1 ? s2, etc

6
Clausius-Clapeyron Eqn
  • Applies to s ? g and l ? g.
  • Assume ideal gas, ?v vg, ?h ? f(p,T)
  • Then Clapeyron Eqn becomes CC Eqn
  • d ln p ?h/RT2 dT
  • ln (p2/p1) - ?h/R1/T2 1/T1 Eqn 14.23

7
Clausius-Clapeyron Eqn
  • ln (p2/p1) - ?h/R1/T2 1/T1 Eqn 14.23
  • Measure p vs T to find ?h/R -slope or ?h for
    sublimation and vaporization. Fig 14.8, Table
    14.1
  • ?hvap - z wAA/2 Eqn 14.24
  • Prob 3, 7, 8

8
III. Refrigerators and Heat Pumps
  • Working fluid operates in a cycle
  • Take heat from cold reservoir (qc at Tc,
    refrigerator or outside) and dumps it into high
    temperature (qh at Th, room or house) sink.
  • Note cycle in Fig 14.9 showing H vs p
  • Determine coefficient of performance c
    gain/work

9
IV. Surface Tension (?)
  • Surface interface between two phases (e.g.
    liquid and vapor).
  • Surface tension free energy cost to increase
    surface area ?
  • Consider lattice model again with N molecules
    total including n on surface with (z-1) n.n. and
    (N-n) in bulk with z n.n.
  • Total surface area A na

10
Surface Tension (?)
  • U wAA/2 Nz-n Eqn 14.25
  • ? (?F/?A)T,V,N (?U/?N)T,V,N - wAA/2a
  • ? increases as wAA increases (becomes more
    negative)
  • ? increases as a decreases (molecular area
    decreases)
  • ? has units of dyn/cm force/length
    erg/cm2 Table 14.2

11
Surface Tension (?)
  • U wAA/2 Nz-n Eqn 14.25
  • ? (?F/?A)T,V,N (?U/?N)T,V,N - wAA/2a
  • Eqn 14.24 14.28 ? ? ?hvap /za Fig 14.12
  • Prob 2,4
Write a Comment
User Comments (0)
About PowerShow.com