Title:
1 Structure of quarkonium states and potential
models
2Outline
- Introduction
- Phenemonological Approach
- Positronium
- Quarkonium
- Theoretical Approach
- Lattice QM
- Lattice QCD
- Decay of quarkonium
3Introduction
meson
quarkonium
quarks
http//en.wikipedia.org/wiki/Standard_Model
- some sets of quantum numbers are absent -gt
exotic - some occur twice. There is the possibility
of, e.g., mixing, as for the deuteron
4Phenomenological Approach
- Positronium
- Bound e e system
- Coulomb potential
- Solving the Schrödinger
- equation
- -gt Energy eigenvalues
-
http//en.wikipedia.org/wiki/Positronium
5Positronium
- Schrödinger eq.
- Ansatz
- radial eq.
- energy eigenvalues
,
6Positronium
- Global
- Fine structure
- Hyperfine structure
- FS and HFS effects of same order
B. Povh, Teilchen und Kerne, Springer-Verlag,
Berlin Heidelberg (2009)
7Phenomenological Approach
- Model/potential which describes characteristics
- reasonable motivation
- produce concrete results
- can be directly confirmed or falsified by
experiment - may guide experimental searches
B. Povh, Teilchen und Kerne, Springer-Verlag,
Berlin Heidelberg (2009)
8Cornell potential
- Coulomb-like at small distances
- -gt asymptotic freedom
- Increasing linear at large distances
- -gt confinement
B. Povh, Teilchen und Kerne, Springer-Verlag,
Berlin Heidelberg (2009)
9Solving the SE
- Central potential -gt same ansatz as for
positronium - No analytic solution. But e.g. the
Nikiforov-Uvarov method yields approximate
analytic formulas
where
and
S. Kuchin, N. Maksimenko, Analytical Solution the
Radial Schrödinger Equation for the
Quark-Antiquark System (2013)
10Results
States Present model Quadratic Coulomb pot. Linear Coulomb pot. Constant Experiment
1S 3.096 3.096 3.068 3.096
1P 3.255 3.433 3.526
2S 3.686 3.686 3.676 3.686
1D 3.504 3.767 3.829
2P 3.779 3.910 3.993 3.773
3S 4.040 3.984 4.144 4.040
4S 4.269 4.150 4.263
5S 4.425 4.421 0.004
S. Kuchin, N. Maksimenko, Analytical Solution the
Radial Schrödinger Equation for the
Quark-Antiquark System (2013)
11Mass spectra of cc and bb
B. Povh, Teilchen und Kerne, Springer-Verlag,
Berlin Heidelberg (2009)
Similar structure -gt model is flavor independent
12Hyperfine structure
- Spin-spin interaction causes hyperfine splittings
- The interaction is only strong at small distances
- Coulomb part is responsible (1 gluon exchange)
- Similar to the positronium (1 photon exchange)
13Hyperfine structure
K. Seth, Hyperfine interaction in heavy quarkonia
(2012)
B. Povh, Teilchen und Kerne, Springer-Verlag,
Berlin Heidelberg (2009)
14Fine structure
- More interactions are needed to describe the
splitting of e.g. the triplet states P , P , P - -gt Spin orbit coupling and tensor force
- Calculating the factors of the triplet P-states
yield
15Fine structure
- This can be inverted as
- The experiment shows that M is above the naive
weighted average - -gt One can estimate the size and the sign of V
t
ss
M / GeV Mt / GeV ltVlsgt / GeV ltVtgt / GeV
1P(cc) 3.520 3.525 0.035 0.01
1P(bb) 9.890 9.900 0.014 0.003
2P(bb) 10.260 10.260 0.009 0.002
J. Richard, An introduction to the quark model
(2012)
16More improvements
- Relativistic corrections
- Orbital mixing
- Coupling to decay channel
- Strong decay of quarkonia
17Other potentials
- Other simplest choices for the interquark
potential - Powerlaw, logarithm, Coulomblinearconstant,
Coulombquadratic - More elaborate potentials
- the linear part is smoothed by pair-creation
effects - the Coulomb term (at short distance) is weakened
by asymptotic freedom -gt running coupling
constant -
A.M. Badalian, V.D. Orlovsky, Yu.A.
Simonov Microscopic study of the string breaking
in QCD
18Theoretical approach
- Lattice Numeric method for the QM and the QFT
- Example to understand the basic principle
- -gt 1D quantum mechanical oscillator
- Euclidean action of the harmonic oscillator
- Calculate the mean quadratic displacement in
the ground state
19Lattice QM
- The path integral formalism is identical to the
SE - Integral over all possible pathes x(t)
- -gt Integral over a function space
- Weighting factor which contains the action
- -gt The pathes near to the classical one
(minimum of Sx) have a strong influence to
the observable - -gt The pathes far away have a small influence
20Lattice QM
- Discretize and compactify the time (1D)
- -gt The path integral is reduced to a normal
finite dimensional integral
M. Wagner, B-Physik mit Hilfe von Gitter-QCD
(2011)
21Lattice QCD
- Euclidean action of the QCD
- field strength tensor
- quarkfields and gluonfields
- Ground state / vacuum expectation
value - Observable (function of the quark- and
gluonfields) - Weighting factor
- Integral over all possible quark- and
gluonfield con?gurations
22Lattice QCD
- Discretize the space time with sufficent small
lattice spacing - Compactify the space time with sufficent large
size - Typical dimension of a QCD path integral
24 quark degrees of freedom per flavor (x2
particle/antiparticle, x3 color, x4 spin), 2
flavors
32 gluon degrees of freedom (x8 color, x4 spin)
23Lattice QCD
- Verification/falsification of the QCD by
comparing the lattice results with the experiment - Predictions for hadrons and other QCD observables
which are not seen yet experimentally - Solving the existing conflicts between
experimental results and model calculations - Examples
- the mass of the proton has been determined
theoretically with an error of less than 2 - Simulation of the forces in hadrons
http//de.wikipedia.org/wiki/Gittereichtheorie
24Decay of quarkonia
- Change of the excitation level via photon
emission - Quark-antiquark annihilation into real or virtual
photons or gluons (electromagnetic or strong) - Creation of one or more light qq pairs from the
vacuum to form light mesons (strong interaction) - Weak decay of one or both heavy quarks
J. Richard, An introduction to the quark model
(2012)
B. Povh, Teilchen und Kerne, Springer-Verlag,
Berlin Heidelberg (2009)
25Decay of quarkonia
J. Richard, An introduction to the quark model
(2012)
26 Thanks for the attention
27References
- Special thanks to Prof. Wambach
- A.M. Badalian, V.D. Orlovsky, Yu.A.
Simonov, Microscopic study of the string breaking
in QCD, Phys.Atom.Nucl. 76 (2013) 955-964 - W. Buchmüller, Quarkonia, North Holland,
Amsterdam (1992) - E. Eichten, K. Gottfried, T. Kinoshita, K. D.
Lane, and T. -M. Yan, Charmonium The model,
Phys. Rev. D 17, 30903117 (1978) - R. Gupta, Introduction to lattice QCD (1998)
- S. Kuchin, N. Maksimenko, Analytical Solution the
Radial Schrödinger Equation for the
Quark-Antiquark System (2013) - B. Povh, Teilchen und Kerne, Springer-Verlag,
Berlin Heidelberg (2009) - J. Richard, An introduction to the quark model
(2012) - K. Seth, Hyperfine interaction in heavy quarkonia
(2012) - M. Wagner, B-Physik mit Hilfe von Gitter-QCD
(2011)
28Back-up
29J. Richard, An introduction to the quark model
(2012)
30(No Transcript)