Discrete Mathematics - PowerPoint PPT Presentation

About This Presentation
Title:

Discrete Mathematics

Description:

Discrete Mathematics Chapter 2 Basic Structures : Sets, Functions, Sequences, and Sums (Lingling Huang) 2-1 Sets Def 1 : A set ... – PowerPoint PPT presentation

Number of Views:721
Avg rating:3.0/5.0
Slides: 21
Provided by: Han1190
Category:

less

Transcript and Presenter's Notes

Title: Discrete Mathematics


1
Discrete Mathematics
  • Chapter 2 Basic Structures Sets, Functions,
    Sequences, and Sums

???? ????? ???(Lingling Huang)
2
2-1 Sets
  • Def 1 A set is an unordered collection of
    objects.
  • Def 2 The objects in a set are called the
    elements, or members of the set.
  • Example 5 ???????
  • N 0,1,2,3, , the set of natural number
    (???)
  • Z ,-2,-1,0,1,2, , the set of integers (??)
  • Z 1,2,3, , the set of positive integers
    (???)
  • Q p / q p ? Z , q ? Z , q?0 , the set
    of rational numbers (???)
  • R the set of real numbers (??)
    (??????1.234?????)

3
  • Def 4 A ? B iff ?x , x ? A ? x ? B ?? A ? B
    ??A ? B ? A ? B
  • Def 5 S a finite set
  • The cardinality of S , denoted by S, is the
    number of elements in S.
  • Def 7 S a set
  • The power set of S , denoted by P(S), is the
    set of all subsets of S.
  • Example 13 S 0,1,2
  • P(S) ?, 0 , 1 , 2 , 0,1 , 0,2 ,
    1,2 , 0,1,2
  • Def 8 A , B sets The Cartesian Product of A
    and B, denoted by A x B, is the set A x B
    (a,b) a ? A and b ? B

4
  • Note. A x B A.B
  • Example 16
  • A 1,2 , B a, b, c
  • A x B (1,a), (1,b), (1,c), (2,a), (2,b),
    (2,c)
  • Exercise 5, 7, 8, 17, 21, 23

5
2-2 Set Operations
  • Def 1,2,4 A,B sets
  • A?B x x ? A or x ? B (union)
  • AnB x x ? A and x ? B (intersection)
  • A B x x ? A and x ? B (????A \ B)
  • Def 3 Two sets A,B are disjoint if AnB ?
  • Def 5 Let U be the universal set.
  • The complement of the set A, denoted by A, is
    the set U A.
  • Example 10 Prove that AnB A?B
  • pf
  • ?? Venn Diagram

6
  • Def 6 A1 , A2 , , An sets
  • Let I 1,3,5 ,
  • Def (p.131??) A,B sets
  • The symmetric difference of A and B, denoted by
    A?B, is the set
  • x x ? A - B or x ? B - A ( A?B ) - ( A
    nB )
  • ?Inclusion Exclusion Principle (????)
  • A ? B A B - A n B
  • Exercise 14, 45

7
2-3 Functions
  • Def 1 A,B sets
  • A function f A ? B is an assignment of
    exactly one element of B to each element of A.
    We write f(a) b if b is the unique element of
    B assigned by f to a ? A.
  • eg.

A
B
A
B
1
a
a
1
ß
ß
2
2
?
3
?
Not a function
Not a function
8
A
B
A
B
1
a
a
1
2
2
ß
ß
3
?
?
4
a function
a function
  • Def (? f A?B ??,???)
  • f (a) 1, f (ß) 4, f (?) 2
  • 1 ??a?image (unique) , a??1?pre-image(not unique)
  • A domain of f , B codomain of f
  • range of f f (a) a ? A f (A) 1,2,4
    (??B)
  • Example 4 f Z ? Z , f (x) x2 , ? f ?domain,
    codomain
  • ?range?

9
  • Example 6 Let f1 R ? R and f2 R ? R s.t.
  • f1(x) x2, f2(x) x - x2, What are the
    function f1 f2 and f1 f2 ?
  • Sol
  • ( f1 f2 )(x) f1(x) f2(x)
    x2 ( x x2 ) x
  • (f1 f2)(x) f1(x).f2(x) x2( x
    x2 ) x3 x4
  • Def 5 A function f is said to be one-to-one, or
    injective, iff f (x) ? f (y) whenever x ? y.
  • Example 8

f
g
A
B
A
B
1
1
a
a
2
2
b
b
3
3
c
d
4
4
5
c
d
5
is 1-1
not 1-1 , ? g(a) g(d) 4
10
  • Example 10 Determine whether the function f (x)
    x 1 is one-to-one ?
  • Sol x ? y ? x 1 ? y 1
  • ? f (x) ? f (y)
  • ? f is 1-1
  • Def 7 A function f A ? B is called onto, or
    surjective, iff for every element b ? B , ?a ? A
    with f (a) b. (? B ??????? f ???)
  • Example 11

Note ?A lt B ?,????onto.
11
  • Def 8 The function f is a one-to-one
    correspondence, or a bijection, if it is both 1-1
    and onto.
  • Examples in Fig 5
  • ??? f A ?B
  • (1) If f is 1-1 , then A B
  • (2) If f is onto , then A B
  • (3) if f is 1-1 and onto , then A B.

12
  • ?Some important functions
  • Def 12
  • floor function x x ?????,? x
  • ceiling function x x ?????.
  • Example 24
  • ½ -½
    7
  • ½ -½
    7
  • Example 29
  • factorial function
  • f N ? Z , f (n) n! 1 x 2 x x n
  • Exercise 1,12,17,19

13
2.4 Sequences and Summations
  • ?Sequence (??)
  • Def 1. A sequence is a function f from A ? Z
  • (or A ? N) to a set S. We use an to
    denote f(n), and call an a term (?) of
    the sequence.
  • Example 1. an , where an 1/n , n ? Z
  • ? a1 1, a2 1/2 , a3
    1/3,
  • Example 2. bn , where bn (-1)n, n ? N
  • ? b0 1, b1 -1 , b2
    1,

14
  • Example 7. How can we produce the terms of a
    sequence if the first 10 terms are 5, 11, 17,
    23, 29, 35,41, 47, 53, 59?
  • Sol
  • a1 5
  • a2 11 5 6
  • a3 17 11 6 5 6 ? 2
  • ? an 5 6 ? (n-1) 6n-1

15
  • Example 8. Conjecture a simple formula for an
    if
  • the first 10 terms of the sequence an are
  • 1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047?
  • Sol
  • ???????
  • ??????????3
  • ? ????? 3n ?
  • ??
  • 3n 3, 9, 27, 81, 243, 729, 2187,
  • an 1, 7, 25, 79, 241, 727, 2185,
  • ? an 3n - 2 , n ? 1

16
  • ? Summations
  • Here, the variable j is call the index of
    summation, m is the lower limit, and n is the
    upper limit.

Example 10. Example 13. (Double summation)

17
  • Example 14.
  • Table 2. Some useful summation formulae

18
  • ?Cardinality
  • Def 4. The sets A and B have the same cardinality
    (size) if and only if there is a one-to-one
    correspondence (1-1 and onto function) from A to
    B.
  • Def 5. A set that is either finite or has the
    same
  • cardinality as Z (or N) is called countable
    (??).
  • A set that is not countable is called
    uncountable.

19
Example 18. Show that the set of odd positive
integers is a countable set.

20
Example 19. Show that the set of positive
rational number (Q) is countable.
Pf Q a / b a, b? Z
(Figure 2)
? Z 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,
9 Q
Exercise 9,13,17,42
(??,? ?? ,? ??)
?Note. R is uncountable. (Example 21)
Write a Comment
User Comments (0)
About PowerShow.com