Two Approaches of Showing Program Equivalence - PowerPoint PPT Presentation

About This Presentation
Title:

Two Approaches of Showing Program Equivalence

Description:

Two Approaches of Showing Program Equivalence Borys Bradel – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 15
Provided by: SWC49
Category:

less

Transcript and Presenter's Notes

Title: Two Approaches of Showing Program Equivalence


1
Two Approaches of Showing Program Equivalence
  • Borys Bradel

2
Introduction
  • Two programs are equivalent if they produce the
    same effect
  • Try for all possible inputs
  • Too many possibilities
  • Security
  • Direct proof
  • Compute necessary conditions
  • Use a theorem prover

3
Motivation - Verification
  • Non-optimizing compilers
  • Optimizing compilers
  • Local optimizations
  • Global optimizations are not verifiable
  • Still want to verify
  • Compare to non-optimized

4
Outline
  • Background
  • Hoare Calculus
  • ACL2
  • Methodology
  • Program Representation
  • Precondition Computation
  • Related Work
  • Conclusion

5
Hoare Calculus
  • P vu Q P ? Qv/u
  • P C1 C2 Q P C1 R, R C2 Q
  • P if B then C1 else C2 Q
  • P and B C1 Q, P and not B C2 Q
  • wlp(uv,Q) Qv/u
  • wlp(C1 C2, Q) wlp (C1, wlp(C2, Q))
  • wlp(if B then C1 else C2, Q)
  • (B and wlp (C1, Q)) or (not B and wlp (C2, Q))
  • y23 x5y x10
  • y23 105y
  • 105(23)

6
ACL2
  • Proofs on recursively defined functions
  • Subset of Common Lisp
  • Information is stored in books
  • (defun our-add (x y) ( x y))
  • (defthm our-add-is-commutative
  • (equal (our-add a b) (our-add b a)))

7
Program Representation
  • Return r1
  • Instructions
  • '((add r1 4 3)
  • (add r3 r1 5)
  • (ble r1 r3
  • ((add r2 5 4)
  • (add r5 6 5))
  • ((add r2 6 2)
  • (add r6 6 3)))
  • (add r4 r1 r2)))

R143 R3R15 if R1 R3
F
T
R254 R565
R262 R663
R4R1R2 return R1
8
Program Representation
R143 R3R15 if R1 R3
func1(A) R143 R3R15 (R2 R1)func1-branch-2(
R3,R1) R4R1R2 return R1
F
T
R254 R565
R262 R663
func1-branch-2(R3,R1) if R1 R3 then
R254 R565 else R262
R663 end if return (R2 R1)
R4R1R2 return R1
  • The program is executable
  • (func1 0) ? 7
  • Equivalence is provable
  • (defthm program-equivalence
  • (equal (func1 A) (func2 A)))

9
Precondition Computation
10
Precondition Computation
R143 R3R15 if R1 R3
R1143 R13R115 if R11 R13
(R1R11 ? R1R3 ? R11R13) ? (R1R11 ? R1gtR3 ?
R11gtR13)
R1R11
T,T
F,F
R254 R565
R262 R663
R1254 R1565
R1262 R1663
R1R11
R1R11
R4R1R2 return R1
R14R11R12 return R11
R1R11
11
Precondition Computation
  • Precondition for branches
  • (R1R11 ? R1R3 ? R11R13) ? (R1R11 ? R1gtR3 ?
    R11gtR13)
  • Precondition for R3R15, R13R115
  • (R1R11 ? R1(R15) ? R11(R115)) ? (R1R11 ?
    R1gt(R15) ? R11gt(R115))
  • Precondition for R143, R1143
  • ((34)(34) ? (34)((34)5) ? (34)((34)5))
    ? ((34)(34) ? (34)gt((34)5) ?
    (34)gt((34)5))
  • (T?T?T)?(T?F?F) T

12
Related Work
  • Robert van Engelen, David Whalley, and Xin Yuan.
    "Automatic Validation of Code-Improving
    Transformations"
  • George C. Necula, Translation Validation for an
    Optimizing Compiler
  • Many more, although less so.

13
Conclusion
  • A theorem prover is useful for validation
  • No need to code the entire logic engine
  • Difficult to incorporate
  • Validation is slow
  • Algorithms must be selected carefully

14
Future Work
  • Add loop, method, and memory handling
  • Cannot analyze real programs
  • Add simplification of constraints
  • Right now constraints grow too quickly
  • Automate
  • Must identify why the proof did not complete
  • May require new theorems, better use of books
Write a Comment
User Comments (0)
About PowerShow.com