Ch 6 . Free Electron Fermi Gas - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Ch 6 . Free Electron Fermi Gas

Description:

Collision with impurities and imperfection ( p.150, Fig.11 ) important at low temp. ( 4.2K) ( no lattice vibration for collision) Net ... – PowerPoint PPT presentation

Number of Views:152
Avg rating:3.0/5.0
Slides: 24
Provided by: zza3
Category:

less

Transcript and Presenter's Notes

Title: Ch 6 . Free Electron Fermi Gas


1
Solid State Physics
Ch 6 . Free Electron Fermi Gas
Prof. J. Joo (jjoo_at_korea.ac.kr) Department of
Physics, Korea University http//smartpolymer.kore
a.ac.kr
2
6.1 Introduction
  • (Fig.1) Na (sodium) metal
  • sea of conduction electrons
  • ??? ??
  • (Cu, Au, Ag)
  • Free el. model ? ?? ??? ??? ??? ??? ? ??
  • ??? ??(valence el.)?? ??? ??? ? ?? conduction
    el. ?? ??,
  • ??? ?? ???? ???? ??? ? ??.
  • ltNotegt conduction el. ? ion ?? ???? ? Ch.7
  • Simple metals (ex Na, K, Rb, Cs ) ?? ???
    15 ??
  • Alkali metals 3s 4s 5s 6s
    ion core ? ????.
  • ?? ?? simple, classical(????) free el. model
    ?
  • ???? ? ? Ohms law ? Electrical and
    thermal conductivity
  • ???? ? ? Heat capacity ? Magnetic
    susceptibility due to cond. el.
  • (Maxwell ????) ? ???? ??
  • ? free el. (or conduction el.) ?? ?? ???? ????
    ???? ??? ? ???? ? ion core ? ???
  • ? Pauli exclusion ??? ?? ?? el.? ?? ??? ?? ??.

?
3
6.2 Energy Levels in 1D (1)
  • Consider a free el. gas in 1D, taking account of
    quantum theory and of the Pauli exclusion
    principle
  • An el. (mass m) is confined to a length L
    (infinite barrier)
  • energy levels
  • wavefunctions
  • Let wavefunction of el. (solution
    of Schrödinger eq.)

3
???(n)
2
1
0
free el.
the energy of el. in the orbital
to denote a solution of the wave eq. for a system
of only one el. (no interaction with other els.)
4
6.3 Energy Levels in 1D (2)
  • Apply b.c.
  • lt ???? gt
  • Degeneracy (???) of orbits with the same
    energy (?, ?? ???? ?? ?? ???)
  • nF the topmost filled (energy) level, where we
    start filling the levels from the bottom (n1)
    and continue filling higher levels with electrons
    until all N electrons are accomodated (p.145)
  • Fermi energy (eF) the energy of the topmost
    filled level

boundary condition ? ????? ??? 2pL/?nnp
ms ½
5
6.4 Effect of Temperature on the Fermi-Dirac
Distribution
  • El. gas ? ?? ???? ??? ???? ?? ????.
  • ? ? ? ???? el. ? ??? Fermi-Dirac ????? ???.
  • ???? µ(T) chemical potential
  • at T0 , µeF

gives the probability that an orbital at
energy e will be occupied in an ideal el. gas in
thermal equilibrium
6
6.5 Free Electron Gas in 3-D (1)
  • 3?? free-particle ? Schrödinger ???
  • ltNotegt 1??
  • ??, el. ? ?? L? cube? ?? ??, wavefunction?
    standing wave ??? ???
  • ??? ? ?(xL, y, z)?(x, y, z)

7
6.5 Free Electron Gas in 3-D (2)
  • From Schrödinger eq.,
  • N?? ???? (free el.)? ?? system ? ground state (?,
    ?? ???
  • ????)??, ??? ? ?? ??? level ? 3?? ??? ? ??.

8
6.5 Free Electron Gas in 3-D (3)
  • Total of orbits (? ??? ?? ?? ?)
  • Fermi velocity at the Fermi surface

For a typical metal,
density of electrons
9
6.5 Free Electron Gas in 3-D (4)
  • D.O.S D(e)

10
6.5 Free Electron Gas in 3-D (5)
D(e)
? e1/2
f(e)D(e) finite temp.(??)
f(e)1
T0 (??)
e
eF
At finite temp., electrons are thermally excited
from to
Important for the physical property of matter
11
6.6 Heat Capacity of the Electron Gas (1)
  • Classical model ??? N?? ???? N?? ?????
  • ?? Cv ?
  • ???, ??? ? Cv (at room temp.)
  • ??? ?????
  • ???? ????? heat capacity? ???? ?? ????
  • ?? ? Pauli exclusion principle ? ????.
  • ? Fermi-Dirac ????
  • ?? ??? T0 K ??? heating ?? ?, ???? ?? ???? kBT
    ???
  • ???? ?? ?? ???. ?? Fermi level ??? ???? kBT ?
    ????
  • ?? thermally excited ??.
  • the el. in this region are responsible
  • for the heat capacity

TF
12
6.6 Heat Capacity of the Electron Gas (2)
agree with the experimental results
  • More detail derivation of Cv (due to electrons)
  • Sommerfeld Expansion (at low temp. T lt TF)
  • (???) Ashcroft / Mermin ? SSP
    Ch.2

??
13
6.7 Experimental Heat Capacity of Metals
  • At low temp. (?, T lt ?D, TF)

Fig.9 ??
14
6.8 Thermal Conductivity
  • ?? ???? thermal conductivity (p.166)
  • el. mean free path
  • average velocity of el.
  • heat capacity / vol. due to el.
  • ???,

? Pure metals el. contribution is dominant,
compared with that due to phonon ? In disordered
system of impure metal, phonon term can not be
ignored. (?el. ? mean free path ? impurity ???
collision ??? ???)
collision time
15
6.9 Electrical Conductivity and Ohms Law (1)
  • Lorentz force (???? ??? ??? ?? ?)
  • ????? (s)
  • current density ( ) ?? ???, ?? ??? ???? ???
  • For el.,

(??/??)
??
N/V (?? /?? ????)
? ? ???
??
collision time
16
6.9 Electrical Conductivity and Ohms Law (2)
  • The definition of electrical conductivity is
  • And, the electrical resistivity ?
  • At room temp.
  • s(Ag)6.21?105 S/cm (?-1cm-1)
  • s(Cu)5.88?105 S/cm
  • s(Nb)0.69?105 S/cm
  • s ? n ( density of charge)
  • t (collision time) ?? l (mean free path)
  • Almost pure Cu
  • sCu (T4K) 105? sCu (T295K) 1011 S/cm
  • ? t 2?10-9 (s) at T4K
  • and
  • ? lvFt 1.57?108?2?10-9 0.3 cm
  • the velocity at the
    very long mean

? ??gt VIR (Ohms Law)
? 3 ??
SI unit
CGS unit for s sec-1
l (T4K,Cu) 0.3 cm l (T295K,Cu) 3?10-6 cm
17
6.10 Experimental Electrical Resistivity of
Metals (1)
  • Electrical resistivity due to collision
  • ? Collision with (lattice) phonons at high
    temp.
  • ? Collision with impurities and imperfection
    (??? p.150, Fig.11??)
  • important at low temp. (4.2K)
  • (?no lattice vibration for collision)
  • Net relaxation time (or net collision time)
  • ? ??? ??
  • due to impurities
  • due to phonons
  • Net resistivity is given by
  • due to phonon Open, independent of
    temperature
  • ? defects ??? ??? ?? ??? ??

due to scattering of el. by defects or impurities
18
6.10 Experimental Electrical Resistivity of
Metals (2)
  • Electrical resistivity ? ??? ?????
  • ? Matthiessens rule (???? ??? ??)

lt Fig.12 gt
Potassium(K)
2 ?? impurity ??? ?? sample (??? ??)
Phonon contribution is dominant
Resistivity ratio residual
resistivity pure metal ??? ? (RT)? ??
? (T?0)? lower ? ? ? higher
lt??gt
??? ????? phonon contribution? ?? impurity
scattering? dominant ! Impurities? ??
scattering? ???, ??? ?? !
19
6.11 Motion in Magnetic Fields (1)
  • ???? ??? ??? ?? ? Lorentz force

F
tt ?? Fermi surface
t0 ?? Fermi surface
20
6.11 Motion in Magnetic Fields (2)
  • ?? ????

Eq.
cyclotron freq.
  • In the steady state in a static el. field,

E ??? ?? ??
21
6.12 Hall Effect (1)
  • ??? n (charge density)? ?? ??? ?? ??? ???? ?? ???
    ??
  • Hall field? ?? (?????? ???? ?? Lorentz force ? ??

  • ?? ??? ??? ??)
  • external mag. field Bz
  • external el. field jx
  • ?? ??? y ???? ????? ??
  • Eq. ?? let vy 0

y
z
x
  • z ?? ??? ?? (??? ? ??)

Ex
v (???)
B
-e
jx
FB
FE
Ey
jx
y
x
z
B
if major ?
jx
Ey
22
6.12 Hall Effect (2)
  • Define Hall coefficient (RH)
  • ? negative for free el.
  • ? positive for hole (positive el.)
  • ? RH ? greater when n is lower
  • ? RH ? ?????? n (carrier concentration) ? ???
    ? ??
  • Notegt 2D Hall resistivity
  • Table 4 Experimental RH

excellent agreement of Na, K
Surface current density
23
6.13 Ratio of Thermal to Electrical Conductivity
  • Wiedemann-Franz law (not at low temp.)

due to free electron
?T
independent of particular metals
lt H.W. gt Ch.6, 1 and 6
Write a Comment
User Comments (0)
About PowerShow.com