Title: Bildbenennung
1Analyse von 82 Hirnaktivierungsxperimenten mit
vier verschiedenen Wortproduktionsaufgaben
- Bildbenennung
- Wortgenerierung (z.B. Nennen Sie möglichst viele
Tiere!) - Wortlesen (HUND)
- Pseudowortlesen (HUNG)
2Talairach Tournoux (1988) Lateral and medial
view of reference brain
3Reported at least once
4Estimate of probability of overlap under the
assumption of a random distribution of activated
regions
number of regions 110 mean number of
activated regions r chance probability for a
region to be reported as activated in a single
experiment (p1) r/110 chance probability for a
region to be reported as activated in n1 out of
n experiments
(with n1 n2 n)
5Reliability criterion p lt 0.1 cut-off point in
binomial distribution
Example region 1 Number of experiments 82 Mean
number of reported regions 12.4 Reliably
activated 12 or more experiments Reliably not
activated 4 or less experiments
Example region 2 Number of experiments 23 Mean
number of reported regions 10.4 Reliably
activated 5 or more experiments Reliably not
activated -
6Zuverlässig aktivierte (rot) und nicht aktivierte
(blau) Hirngebiete (basierend auf allen 82
Studien)
7TASK ANALYSIS Many tasks were not just word
production tasks they involved other operations
as well. For instance, when you name the
picture of a horse, you not only produce the
word 'horse', but you also look at the picture
and recognize it. Such additional 'lead-in'
operations involve the activation of additional
brain regions. These should be filtered out.
That requires a systematic task analysis, a
distinction between 'lead-in' and 'core'
operations of word production.
8Responses during Verb Generation Task
9Kernprozesse
Aufgabe
Einleitungsprozesse
Bildbenennung
Worterkennung Objektvorstellung Gedächtnis etc.
Wortgenerierung
Wortlesen
Pseudowortlesen
aussprechen vs. Wort denken
10Bildbenennung
11Wortgenerierung
12Bildbenennung (grün), Wortgenerierung (blau),
gemeinsame Gebiete (rot)
13Gemeinsame Aktivierungsgebiete von Bildbenennung
und Wortgenerierung
14Kernprozesse
Aufgabe
Einleitungsprozesse
Bildbenennung
Worterkennung Objektvorstellung Gedächtnis etc.
Wortgenerierung
Selbstmonitoring
Wortlesen
Pseudowortlesen
aussprechen vs. Wort denken
15Kernprozesse
Aufgabe
Einleitungsprozesse
Bildbenennung
Worterkennung Objektvorstellung Gedächtnis etc.
Wortgenerierung
Selbstmonitoring
Wortlesen
Pseudowortlesen
aussprechen vs. Wort denken
16Wortlesen
17Gemeinsame Aktivierungsgebiete von Bildbenennung,
Wortgenerierung und Wortlesen
18Kernprozesse
Aufgabe
Einleitungsprozesse
Bildbenennung
Worterkennung Objektvorstellung Gedächtnis etc.
Wortgenerierung
Selbstmonitoring
Wortlesen
Pseudowortlesen
aussprechen vs. Wort denken
19Gemeinsame Aktivierungsgebiete aller Aufgaben
20Aussprechen im Vergleich zu Wort denken
21Schematische Darstellung des Ergebnisses der
Meta-Analyse von 82 Hirnaktivierungsstudien
Indefrey, P. and Levelt, W.J.M. (2004) Cognition
22The cognitive architecture of listening to
language
integration with other knowledge sources
interpretation
syntactic analysis thematic analysis
word recognition
phonological processing
phonemes, syllables
segmenting
speech code
decoding
speech signal
23Tekst Sereno
Then once you have examined the city you can get
a uh nice contrast to the surrounding country
side - uh a very unique country side which
contrasts the distinction between the the
mountains to the uh low land of the coastal
regions where there is a lot more uh fishing.
Speech signal
24snelheid proposities (rate of propositions)
25mixing van alle vier
speech signal
rate of propositions
rate of words
rate of phonemes
26Reversed speech versus silence
27Word lists versus silence
28Studies comparing auditory stimuli to silent
baseline conditions
Study Stimulus
Belin 1998 200ms frequency transition, 60/min 1
Belin 1998 40ms frequency transition, 60/min 2
Belin 1999 synthetic diphthong, 6/min 3
Binder 2000 tones, different frequencies, 90/min 4
Bookheimer 1998 pseudowords, 9/min 5
Celsis 1999 syllables, 180/min 6
Celsis 1999 tones, 500 700Hz, 180/min 7
di Salle 2001 tones, 1000Hz, 6/min 8
Engelien 1995 environmental sounds, 10/min 9
Fiez 1996 pseudowords, 60/min 10
Fiez 1996 words, 60/min 11
Giraud 2000 vowels vs. expecting vowels, 120/min 12
Holcomb 1998 tones, 1500Hz lower tones, 30/min 13
Jäncke 1999 tones, 1000Hz, 60/min 14
Lockwood 1999 tones, 500 4000Hz, 60/min 15
Mellet 1996 words, 30/min 16
Mirz 1999 music 17
Mirz 1999 sentences 18
Study Stimulus
Mirz 1999 tones, 1000Hz 19
Mirz 1999 tones, 1000 4000Hz 20
Mirz 1999 words 21
Müller 1997 sentences, 12/min 22
Petersen 1988 words, 60/min 23
Price 1996 words, 40/min 24
Price 1996 words, different rates 25
Suzuki 2002a words, 60/min 26
Suzuki 2002b tones, 1000Hz, 60/min 27
Thivard 2000 tones with spectral maxima, 60/min 28
Warburton 1996 words, 4/min 29
Wise 1991 pseudowords, 40 or 60/min 30
Wong 1999 reversed sentences, 30/min 31
Wong 1999 sentences, 30/min 32
Wong 1999 words, 30/min 33
Wong 2002 reversed words, 15/min 34
Wong 2002 sentences, 12/min 35
Wong 2002 words, 15/min 36
Indefrey Cutler, 2004
29Studies comparing auditory stimuli to simpler
auditory stimuli
Study Stimulus vs. control stimulus
Benson 2001 CVC gt CV gt V 1
Binder 1996 words vs. tones 2
Binder 2000 pseudo vs. tones 3
Binder 2000 reversed words vs. tones 4
Binder 2000 words vs. tones 5
Giraud 2000 amplitude modulated noise vs. noise 6
Giraud 2000 sentences vs. vowels 7
Giraud 2000 words vs. vowels 8
Hall 2002 frequency modulated vs. static tone 9
Hall 2002 harmonic vs. single tone 10
Jäncke 2002 syllables vs. 350 ms white noise bursts 11
Jäncke 2002 syllables vs. steady state portion of vowel 12
Jäncke 2002 syllables vs. tones 13
Müller 2002 90 1000Hz 10 500Hz vs. 1000Hz 14
Mummery 1999 words vs. signal correlated noise 15
Price 1996 words vs. reversed words 16
Schlosser 1998 sentences vs. unknown language 17
Scott 2000 sentences vs. rotated sentences 18
Thivard 2000 frequency transition vs. stationary tone 19
Indefrey Cutler, 2004
30Talairach Tournoux (1988) Lateral and medial
view of reference brain
31(No Transcript)
32Silent control
33Silent control
34When do activation maxima agree reliably between
studies?
35Silent control
36Silent control
37Silent control
38Narain et al. 2003, Fig. 2
39Silent control
40Silent control
41Silent control
42Silent control
43Silent control
44What about the functional roles of these areas?
45Silent control
46Auditory control
47Auditory control
48Silent control
49Silent control
50Summary
Listening to speech without an additional task
induces extensive bilateral temporal activation
but no reliable activation of Brocas area.
51Summary
With increasing linguistic complexity of stimuli,
the distance of activation maxima from the
primary auditory cortex increases particularly
in the left hemisphere. It seems to be the
highest linguistic processing level that leads to
the most significant activation difference
compared to a silent control.
52Summary
The left hemisphere shows a clearer
stimulus-specific differentiation of activation
maxima. Areas that seem to be especially related
to (post-) lexical and sentence level processing
can be identified.
53Summary
bilateral posterior STG phonology left posterior
STS lexical phonology left anterior STS
possibly lexical and sentential prosody, possibly
lexical and sentential meaning
54Hagoort Indefrey, in press
55Neuroimaging studies on sentence processing
Hagoort Indefrey, in press
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62Haller, Klarhöfer, Radue, Schwarzbach, Indefrey
(2007) Eur. J. Neuroscience
63Stimuli
64Haller, Klarhöfer, Radue, Schwarzbach, Indefrey
(2007) Eur. J. Neuroscience
65Bookheimer (2002), Fig. 2
66Haller, Klarhöfer, Radue, Schwarzbach, Indefrey
(2007) Eur. J. Neuroscience
67wegstossen-Animation(1)
68wegstossen-Animation(2)
69(No Transcript)
70Sentences vs. Single Words
Activation maximum at -60,14,12 Indefrey et al.
(2004) Brain Language
Activation maximum at -54,6,10 Indefrey et al.
(2001) PNAS
71S and NP production vs. control (W)
Indefrey, Hellwig, Herzog, Seitz Hagoort (2004)
Brain Language
72Conclusions (1)
- The left posterior IFG and the left posterior
temporal lobe subserve syntactic comprehension. - Neural activation in syntactic comprehension
depends on the need for syntactic analysis. - The two areas do not subserve the same function,
because the temporal area does not seem to
respond to syntactic errors and is not found in
syntactic production.
73Aufgabe vom 14.5.10
- Finden Sie eine neue Studie (ab 2006) in der mit
FMRI, PET, oder NIRS entweder Wortproduktion oder
Wortverstehen oder Satzverstehen untersucht
wurde. - Vergleichen Sie die Ergebnisse mit der
entsprechenden Meta-analyse. - Wodurch könnten Unterschiede zustande gekommen
sein?