Networked Embedded Systems - PowerPoint PPT Presentation

About This Presentation
Title:

Networked Embedded Systems

Description:

Networked Embedded Systems Kamin Whitehouse CS 696 09/05/07 – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 35
Provided by: Kamin7
Category:

less

Transcript and Presenter's Notes

Title: Networked Embedded Systems


1
Networked Embedded Systems
  • Kamin WhitehouseCS 696
  • 09/05/07

2
Technology Trends
  • Sensors/actuators entering human habitats
  • 32 million homes have security sensors
  • 5 million homes have X10 devices
  • Estimated 20 million ZigBee devices by EOY
  • We will need
  • To program them
  • To debug them
  • Privacy preservation
  • Data stream processing

3
Macro-programming
RPC (marionette)
for i 1100 val nodei.light.read() date
nodei.time() if val lt 50 printf(Error!)
else hashtable.put(i,val,date) end pda.di
splay(val) end
node
node
pda/server
node/server
pda
4
Macroprogramming
Automatic Decomposition
  • for i 1100
  • val nodei.light.read()
  • date nodei.time()
  • if val lt 50
  • printf(Error!)
  • else
  • hashtable.put(i,val,date)
  • end
  • pda.display(val)
  • end

node
node
pda/server
node/server
pda
5
Macroprogramming
Automatic Decomposition
for i 1100 val nodei.light.read() date
nodei.time() if val lt 50 printf(Error!)
else hashtable.put(i,val,date) end pda.di
splay(val) end
node
node
server
server
pda
6
Macroprogramming
QoS Satisfaction
L lt 350
  • for i 1100
  • val nodei.light.read()
  • date nodei.time()
  • if val lt 50
  • printf(Error!)
  • else
  • hashtable.put(i,val,date)
  • end
  • pda.display(val)
  • end

node
node
server
server
pda
7
Macroprogramming
QoS Satisfaction
L lt 350
  • for i 1100
  • val nodei.light.read()
  • date nodei.time()
  • if val gt 50
  • printf(Error!)
  • else
  • hashtable.put(i,val,date)
  • end
  • pda.display(val)
  • end

node
node
server
server
pda
8
Macroprogramming
QoS Satisfaction
L lt 350
  • for i 1100
  • val nodei.light.read()
  • date nodei.time()
  • if val gt 50
  • hashtable.put(i,val,date) else
  • printf(Error!)
  • end
  • pda.display(val)
  • end

node
node
server
server
pda
9
Macroprogramming
QoS Satisfaction
L lt 350
  • for i 1100
  • val nodei.light.read()
  • date nodei.time()
  • if val gt 50
  • hashtable.put(i,val,date) else
  • printf(Error!)
  • end
  • pda.display(val)
  • end

node
node
node
pda
pda
10
Macroprogramming
QoS Satisfaction
L lt 350
  • for i 1100
  • val nodei.light.read()
  • date nodei.time()
  • if val gt 50
  • hashtable.put(i,val,date) else
  • printf(Error!)
  • end
  • pda.display(val)
  • end

node
node
node
pda
pda
11
Macroprogramming
QoS Satisfaction
L lt 350
for i 1100 val nodei.light.read() date
nodei.time() if val lt 50 printf(Error!)
else hashtable.put(i,val,date) end pda.di
splay(val) end
node
node
server
server
pda
12
Outline check
  • Programming
  • Debugging
  • Privacy
  • Data Processing

13
Debugging
14
Debugging
Program
MCU
Add a trap
Debugger
15
Debugging
16
Debugging
  • Break
  • Step
  • Watch
  • Backtrace
  • Etc
  • 30KB of program memory
  • 1KB of RAM

17
Outline check
  • Programming
  • Debugging
  • Privacy
  • Data Processing

18
Privacy Preservation
  • Home or away
  • Awake or asleep
  • Bathroom usage
  • Kitchen usage
  • Showering, toileting, washing
  • Cooking hot food or preparing cold food

19
FATS Attack
Bathroom
Kitchen
Living Rm
20
FATS success across 4 homes
21
Preserving Privacy
Complete Privacy
Bayes Rule
Requirement For Privacy
22
Counter Attacks
  • Periodic Transmissions
  • Assumes tolerable latency bound L
  • Does not work with real-time or high bandwidth
    requirements
  • Consumes bandwidth
  • Consumes power
  • Random Delays
  • Exploit L with lower power bandwidth
    requirements
  • Still assumes L

23
Counter Attacks
  • Mask fingerprints in hardware by varying features
    for each transmission
  • Arms race scenario, unable to predict features
    used by an adversary
  • Not supportable by current hardware
  • Does not affect inference of sleep and home
    occupancy variables

24
Counter Attacks
  • Increasing Packet loss ratio by
  • Reducing transmission power
  • Introducing RF attenuators

25
Outline check
  • Programming
  • Debugging
  • Privacy
  • Data Processing

26
Data Stream Processing
  • Can the user infer desired info without making
    strong assumptions?

27
Data labeling
  • Can we detect patterns without assumptions?
  • Major time saver

28
Data Labeling
29
Results
30
Results
31
Data Sharing
  • Personal sensors are prevalent
  • Homes
  • Cars
  • Phones
  • Shoes, etc
  • Goal create infrastructure for sharing data
    creating value

32
  • Shopkeepers publish data
  • people in front of store
  • people coming into store
  • Credit card purchase info, etc
  • Entrepreneurs provide service
  • Effect of weather, concerts, etc on business
  • Effect of advertising
  • How to increase conversion rates, etc
  • Plus
  • Overall activity downtown
  • Value of commercial real estate
  • Effect of vehicular traffic on businesses, etc.

33
Search
  • Search is key to data sharing
  • PageRank
  • StreamRank mines the WWSW and creates links
    between data streams
  • Correlation
  • Ownership
  • Browsing, etc

34
Thanks
  • Kamin Whitehouse
  • Computer Science Department
  • whitehouse_at_cs.virginia.edu
Write a Comment
User Comments (0)
About PowerShow.com