?????????????LCD??? - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

?????????????LCD???

Description:

LCD Thin film transistor liquid crystal display(TFT-LCD) ... – PowerPoint PPT presentation

Number of Views:117
Avg rating:3.0/5.0
Slides: 31
Provided by: tzl
Category:
Tags: lcd | crystal | texture

less

Transcript and Presenter's Notes

Title: ?????????????LCD???


1
?????????????LCD???
2
??
  • ??,Thin film transistor liquid crystal
    display(TFT-LCD)???????????????????????????LCD????
    ???????????,??????????????????????????????,???????
    global(??)?????????TFT????????(??????)?????TFT????
    ?????????????????????????,????????????????(structu
    ral texture)???????????????????????????????????(SV
    D)???????????(It is based on a global image
    reconstruction scheme using the singular value
    decomposition (SVD) ).??????????????,?????????????
    ???????????????????????????,????????????????????,?
    ?,????????????????????,????????????????????????,??
    ?????TFT?????????,?????,????,??,?????,???????????
    ???????LCD????????

3
1,??
  • ???,TFT-LCD???????,???????????????,???,???????????
    ??????LCD??????,?TFT??????????????????????????????
    ?????????LCD????????,?????????????????????????????
    ??????????????????????????????,????????TFT????????
    ????????,???????????????TFT-LCD??????
  • TFT???????????????,?????LCD?????????????TFT???????
    ?????2???????????????????MURA,SIMI,ZURE,MURA???
    ??????,SIMI????TFT??????,ZURE????????????????????,
    ??,????????????????????????????????????,??????????
    ??????????????????????????????????????????????????
    TFT??????????????

4
  • ??LCD??????,??????????????????????LCD?????????Henl
    y?Addiego?2?????????????,??????LCD?????????????Kid
    o et al.??????????????????????LCD?????????????????
    ??????????????????????????????????????????????????
    ???????????????TFT???????????????,????????????????
    ??????????????????????
  • ????????????????LCD????Nakashima???LCD????????????
    ????????????LCD???
  • Nakashima presented an inspection system based on
    image subtraction and optical Fourier filtering
    for detecting defects on an LCD colour filter
    panel?

5
  • Sokolov and Treskunov developed an automatic
    vision system for final chech of LCD output
    check.
  • Slkolov?Treskunov?????LCD??????
  • ????LCD??????????????????,????????????????
  • ??TFT????????????????????????????,TFT?????????????
    ???????,?????????????TFT?????????????????????????T
    FT???????????????????????????????,????SVD?????????
    TFT?????????

6
  • In this paper, we propose a global approach that
    uses an SVD-based image reconstruction technique
    for inspecting micro defects including pinholes,
    scratches, particles and fingerprints
  • on the surface of TFT panels. The proposed method
    does not
  • rely on textural features to detect local
    anomalies, and does not require a reference image
    for comparison. It alleviates all limitations of
    the feature extraction schemes and template
    matching methods just mentioned.
  • ????,?????????????SVD?????????????,??????,??,??,??
    ??????????????????????,??????2????????????????????
    ?????????????????
  • SVD??????????????????????????????????????????????
    ????????LCD?????,??????????0?(preserve the
    smaller singular values)??????????????,???????????
    ????

7
2??????
Fig. 1. The schema of a single pixel of a TFT panel ???1???????TFT?????????? At each pixel, the gate of the TFT is connected to the gate line and the source is connected to the data line. ?????,TFT?GATE???GATE??,???????????
8
Fig. 2. The surface image of a TFT panel ???????TFT?????????,????,????????????
9
??????
  • ???????MN?????X,MgtN,??????????????????R?????????,
    ??R???X??,??RltN?
  • XUSVT,??,U????????XXT??MR????V?NR??????????XTX?
    ??S?RR????,????????,??XTX?????????????a??,???????
    ???????
  • SVD??????X??????????(a)???????X??????????(energe)?
    ???????????,??????X????????????,??????????????????
    ?,???????0?
  • The singular values and their distribution, which
    carry useful information about the contents of X,
    vary drastically from image to image. For an
    image with orthogonal texture content such as
    horizontal and/or vertical structures, only a
    very few larger singular values will dominate,
    and yet all others have magnitudes close to zero.

10
Fig. 3. a and b Two artificial lines images with different line spacing c A TFT panel image d The plot of the corresponding first ten largest singular values
11
  • ???a,b????????,C??????,????,???????????????????,??
    ?,????????0.
  • ???????,???????????????????????????
  • In most of the cases, the larger singular values
    (with lager
  • magnitude) represent the global approximation of
    the original
  • Image
  • ?????????????????,??,???????????????

12
??SVD?????
  • ??????,?????????????TFT?????(??)?SVD??????TFT?????
    ???????????,??SVD????????????TFT??????????????????
    ????????????????SVD?????????TFT???????????????????
    ????????????????TFT???????????????????????????????
  • X?UjajVTj J?k1?r?
  • X???????,Uj?Vj?U?V??j???k????????????aj?S??j????
    ,r???X???

13
???????a,b1,b2,b3,c1,c2,c3
14
  • Fig. 4. a The artificial horizontal/vertical
    lines image (the original image) b1 the
    reconstructed image from s1 b2 The reconstructed
    image from s2 b3 The reconstructed image from
    both s1 and s2 c1 The reconstructed image
    excluding s1 c2 The reconstructed image
    excluding s2 b3 The reconstructed image
    excluding both s1 and s2
  • a???????????(??????),b1??a1??????,b2?a2????,b3??a1
    ,a2????,c1??????a1??????????,c2???a2????,c3????a1,
    a2?????

15
????????
  • ???1???????????????,???2??????????????????????????
    ??????,???k??????2??????????????????????k????,
  • ???????????????
  • ai(ai-ua)/sa i1,2r
  • ??,???????i????(normalize)????,ai ??i????,ua
    ???,s??????????(standard deviation of all
  • singular values)
  • ??si si -si1 ??????I???????????????????,???????
    ???????
  • If ?si is larger
  • than some threshold (T?s ), the additional
    singular value si1
  • is considered to be significant.

16
?5,?????a,b,c,d
17
y
  • Fig. 5ad. The artificial orthogonal image with
    scratch defects a The original image b The plot
    of the marginal gain (?s) of normalized singular
    values c The restored image d the resulting
    binary image for defect segmentation
  • a??????,b??a?????,c????????,d?????????????,???,k4
    ,?4??,??????????k?????,???????????????k???????????
    ??c?????????????????????
  • ??????????????,???????????????????,???????????????
    ????????????????????
  • µ?X t s?X
  • ??µ?X?s?X??????????????(standard deviation of
    grey levels),t??????

18
  • According to the Chebyshevs theorem 4, the
    probability that any random variable x will fall
    within t standard deviations of the mean is at
    least 1- 1 /2 . That is
  • p(µ?X -t s?Xlt x ltµ?X t s?X) 1-1/2
  • ?????????????X??????????????????
  • ?TFT??????????,?????????????,??????,??????????k4,
    ?????93.75?????

19
?????
  • ?????,??????????,???????????????
  • ???256256??????8?????6?a---c????3??????????????
  • Fig. 6ac. Three defective images under fine
    image resolution (60 pixels/mm) a Pinhole b
    Scratch c Particle

20
Fig. 7. A defective image with fingerprint under coarse image resolution (20pixels/mm) ?7?????????????(?????20???)
21
  • ?8?a?d????????s ??6??7?????????????????,????????0.
    05??,??????0?????

22
  • ?1???????????????4?????????????????????0.05,??,??
    ??????????0???,0.05???????????
  • Defective image Pinhole Fig. 6a Scratch Fig. 6b
    Particle Fig. 6c Fingerprint Fig. 7 Singular
    value
  • (si) s ?s s ?s s ?s
    s ?s
  • s1 15.86 14.56 15.77 13.96 15.83 14.38
    15.89 15.29
  • s2 1.30 0.85 1.81 0.98 1.45 0.90
    0.60 0.10
  • s3 0.45 0.15 0.83 0.30 0.55 0.26
    0.51 0.17
  • s4 0.30 0.13 0.53 0.21 0.30 0.04
    0.34 0.05
  • s5 0.17 0.04 0.32 0.05 0.25 0.04
    0.29 0.10
  • s6 0.13 0.04 0.27 0.10 0.21 0.04
    0.19 0.02
  • s7 0.09 0.03 0.17 0.10 0.17 0.03
    0.17 0.01
  • s8 0.06 0.03 0.07 0.02 0.14 0.02
    0.16 0.04
  • s9 0.03 0.01 0.05 0.02 0.12 0.03
    0.12 0.01
  • s10 0.02 0.02 0.04 0.01 0.09 0.01
    0.11 0.02

23
  • ?9?a1,b1,c1,d1????6?7?TFT?????????9a2?????5???????
    ?????????????????????????????,????????????????????
    ??????????b2?c2??????8???4?????????,??????????????
    ????D2????d1??6???????????a3d3???????????????????
    ????,????????????

24
?9Fig. 9. a1-d1 The defective images with
pinhole, scratch, particle and fingerprint,
respectively a2-d2 The respective restored
images a3-d3 The resulting binary images for
defect segmentation
25
  • ????????????,?????TFT????????10a?????6????????,b??
    ???????

Fig. 10. a A faultless version of the image in Fig. 6 b The plot of marginal gains (?s) c The restored image d The resulting binary image
26
???a--i
Fig. 11ai. The restored results of the fingerprint image in Fig. 7 from different selected numbers of singular values a The result from k 6 be The results from different selected numbers k-1, k-2, k-3 and k-4, respectively f i The results from different selected numbers k1, k2, k3 and k4, respectively
27
  • ??a?????6?????????????,?be????5,4,3,2????????????
    ???,??????????????,b,c????????????,??d?e??????????
    ??f?i??????7,8,9,10.??????????????,???????????????
    ??,?????k-2??????????????,

28
???????
  • SVD??????????????????????????????????6b???????????
    ???????????????1,2,3,4,5?

29
  • Fig. 12af. The restored results of the scratch
    image in Fig. 6 from various rotation angles a
    The result from the original image bf The
    results from the images with 1?-, 2?-, 3?-, 4?-
    and 5?-rotation, respectively
  • ?12?bf??????1?5???,a??????,????,?????2???,??????
    ,????2??,??????????????????????,??2??????????????
    ,????2????????????????

30
??
  • TFT??????????????????,?????????????????,??????????
    ???????TFT???????????????????LCD?????,?????TFT????
    ?????,???????-??????????????????????,?????????????
    ???????,??????????????
Write a Comment
User Comments (0)
About PowerShow.com