Title: ?????????????LCD???
1?????????????LCD???
2??
- ??,Thin film transistor liquid crystal
display(TFT-LCD)???????????????????????????LCD????
???????????,??????????????????????????????,???????
global(??)?????????TFT????????(??????)?????TFT????
?????????????????????????,????????????????(structu
ral texture)???????????????????????????????????(SV
D)???????????(It is based on a global image
reconstruction scheme using the singular value
decomposition (SVD) ).??????????????,?????????????
???????????????????????????,????????????????????,?
?,????????????????????,????????????????????????,??
?????TFT?????????,?????,????,??,?????,???????????
???????LCD????????
31,??
- ???,TFT-LCD???????,???????????????,???,???????????
??????LCD??????,?TFT??????????????????????????????
?????????LCD????????,?????????????????????????????
??????????????????????????????,????????TFT????????
????????,???????????????TFT-LCD?????? - TFT???????????????,?????LCD?????????????TFT???????
?????2???????????????????MURA,SIMI,ZURE,MURA???
??????,SIMI????TFT??????,ZURE????????????????????,
??,????????????????????????????????????,??????????
??????????????????????????????????????????????????
TFT??????????????
4- ??LCD??????,??????????????????????LCD?????????Henl
y?Addiego?2?????????????,??????LCD?????????????Kid
o et al.??????????????????????LCD?????????????????
??????????????????????????????????????????????????
???????????????TFT???????????????,????????????????
?????????????????????? - ????????????????LCD????Nakashima???LCD????????????
????????????LCD??? - Nakashima presented an inspection system based on
image subtraction and optical Fourier filtering
for detecting defects on an LCD colour filter
panel?
5- Sokolov and Treskunov developed an automatic
vision system for final chech of LCD output
check. - Slkolov?Treskunov?????LCD??????
- ????LCD??????????????????,????????????????
- ??TFT????????????????????????????,TFT?????????????
???????,?????????????TFT?????????????????????????T
FT???????????????????????????????,????SVD?????????
TFT?????????
6- In this paper, we propose a global approach that
uses an SVD-based image reconstruction technique
for inspecting micro defects including pinholes,
scratches, particles and fingerprints - on the surface of TFT panels. The proposed method
does not - rely on textural features to detect local
anomalies, and does not require a reference image
for comparison. It alleviates all limitations of
the feature extraction schemes and template
matching methods just mentioned. - ????,?????????????SVD?????????????,??????,??,??,??
??????????????????????,??????2????????????????????
????????????????? - SVD??????????????????????????????????????????????
????????LCD?????,??????????0?(preserve the
smaller singular values)??????????????,???????????
????
72??????
Fig. 1. The schema of a single pixel of a TFT panel ???1???????TFT?????????? At each pixel, the gate of the TFT is connected to the gate line and the source is connected to the data line. ?????,TFT?GATE???GATE??,???????????
8Fig. 2. The surface image of a TFT panel ???????TFT?????????,????,????????????
9??????
- ???????MN?????X,MgtN,??????????????????R?????????,
??R???X??,??RltN? - XUSVT,??,U????????XXT??MR????V?NR??????????XTX?
??S?RR????,????????,??XTX?????????????a??,???????
??????? - SVD??????X??????????(a)???????X??????????(energe)?
???????????,??????X????????????,??????????????????
?,???????0? - The singular values and their distribution, which
carry useful information about the contents of X,
vary drastically from image to image. For an
image with orthogonal texture content such as
horizontal and/or vertical structures, only a
very few larger singular values will dominate,
and yet all others have magnitudes close to zero.
10Fig. 3. a and b Two artificial lines images with different line spacing c A TFT panel image d The plot of the corresponding first ten largest singular values
11- ???a,b????????,C??????,????,???????????????????,??
?,????????0. - ???????,???????????????????????????
- In most of the cases, the larger singular values
(with lager - magnitude) represent the global approximation of
the original - Image
- ?????????????????,??,???????????????
12??SVD?????
- ??????,?????????????TFT?????(??)?SVD??????TFT?????
???????????,??SVD????????????TFT??????????????????
????????????????SVD?????????TFT???????????????????
????????????????TFT???????????????????????????????
- X?UjajVTj J?k1?r?
- X???????,Uj?Vj?U?V??j???k????????????aj?S??j????
,r???X???
13???????a,b1,b2,b3,c1,c2,c3
14- Fig. 4. a The artificial horizontal/vertical
lines image (the original image) b1 the
reconstructed image from s1 b2 The reconstructed
image from s2 b3 The reconstructed image from
both s1 and s2 c1 The reconstructed image
excluding s1 c2 The reconstructed image
excluding s2 b3 The reconstructed image
excluding both s1 and s2 - a???????????(??????),b1??a1??????,b2?a2????,b3??a1
,a2????,c1??????a1??????????,c2???a2????,c3????a1,
a2?????
15????????
- ???1???????????????,???2??????????????????????????
??????,???k??????2??????????????????????k????, - ???????????????
- ai(ai-ua)/sa i1,2r
- ??,???????i????(normalize)????,ai ??i????,ua
???,s??????????(standard deviation of all - singular values)
- ??si si -si1 ??????I???????????????????,???????
??????? - If ?si is larger
- than some threshold (T?s ), the additional
singular value si1 - is considered to be significant.
16?5,?????a,b,c,d
17y
- Fig. 5ad. The artificial orthogonal image with
scratch defects a The original image b The plot
of the marginal gain (?s) of normalized singular
values c The restored image d the resulting
binary image for defect segmentation - a??????,b??a?????,c????????,d?????????????,???,k4
,?4??,??????????k?????,???????????????k???????????
??c????????????????????? - ??????????????,???????????????????,???????????????
???????????????????? - µ?X t s?X
- ??µ?X?s?X??????????????(standard deviation of
grey levels),t??????
18- According to the Chebyshevs theorem 4, the
probability that any random variable x will fall
within t standard deviations of the mean is at
least 1- 1 /2 . That is - p(µ?X -t s?Xlt x ltµ?X t s?X) 1-1/2
- ?????????????X??????????????????
- ?TFT??????????,?????????????,??????,??????????k4,
?????93.75?????
19?????
- ?????,??????????,???????????????
- ???256256??????8?????6?a---c????3??????????????
- Fig. 6ac. Three defective images under fine
image resolution (60 pixels/mm) a Pinhole b
Scratch c Particle
20Fig. 7. A defective image with fingerprint under coarse image resolution (20pixels/mm) ?7?????????????(?????20???)
21- ?8?a?d????????s ??6??7?????????????????,????????0.
05??,??????0?????
22- ?1???????????????4?????????????????????0.05,??,??
??????????0???,0.05??????????? - Defective image Pinhole Fig. 6a Scratch Fig. 6b
Particle Fig. 6c Fingerprint Fig. 7 Singular
value - (si) s ?s s ?s s ?s
s ?s - s1 15.86 14.56 15.77 13.96 15.83 14.38
15.89 15.29 - s2 1.30 0.85 1.81 0.98 1.45 0.90
0.60 0.10 - s3 0.45 0.15 0.83 0.30 0.55 0.26
0.51 0.17 - s4 0.30 0.13 0.53 0.21 0.30 0.04
0.34 0.05 - s5 0.17 0.04 0.32 0.05 0.25 0.04
0.29 0.10 - s6 0.13 0.04 0.27 0.10 0.21 0.04
0.19 0.02 - s7 0.09 0.03 0.17 0.10 0.17 0.03
0.17 0.01 - s8 0.06 0.03 0.07 0.02 0.14 0.02
0.16 0.04 - s9 0.03 0.01 0.05 0.02 0.12 0.03
0.12 0.01 - s10 0.02 0.02 0.04 0.01 0.09 0.01
0.11 0.02
23- ?9?a1,b1,c1,d1????6?7?TFT?????????9a2?????5???????
?????????????????????????????,????????????????????
??????????b2?c2??????8???4?????????,??????????????
????D2????d1??6???????????a3d3???????????????????
????,????????????
24?9Fig. 9. a1-d1 The defective images with
pinhole, scratch, particle and fingerprint,
respectively a2-d2 The respective restored
images a3-d3 The resulting binary images for
defect segmentation
25- ????????????,?????TFT????????10a?????6????????,b??
???????
Fig. 10. a A faultless version of the image in Fig. 6 b The plot of marginal gains (?s) c The restored image d The resulting binary image
26???a--i
Fig. 11ai. The restored results of the fingerprint image in Fig. 7 from different selected numbers of singular values a The result from k 6 be The results from different selected numbers k-1, k-2, k-3 and k-4, respectively f i The results from different selected numbers k1, k2, k3 and k4, respectively
27- ??a?????6?????????????,?be????5,4,3,2????????????
???,??????????????,b,c????????????,??d?e??????????
??f?i??????7,8,9,10.??????????????,???????????????
??,?????k-2??????????????,
28???????
- SVD??????????????????????????????????6b???????????
???????????????1,2,3,4,5?
29- Fig. 12af. The restored results of the scratch
image in Fig. 6 from various rotation angles a
The result from the original image bf The
results from the images with 1?-, 2?-, 3?-, 4?-
and 5?-rotation, respectively - ?12?bf??????1?5???,a??????,????,?????2???,??????
,????2??,??????????????????????,??2??????????????
,????2????????????????
30??
- TFT??????????????????,?????????????????,??????????
???????TFT???????????????????LCD?????,?????TFT????
?????,???????-??????????????????????,?????????????
???????,??????????????