Chapter 2 Trigonometric Functions - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Chapter 2 Trigonometric Functions

Description:

Chapter 2 Trigonometric Functions 2.1 Degrees and Radians 2.2 Linear and Angular Velocity 2.3 Trigonometric Functions: Unit Circle Approach 2.4 Additional Applications – PowerPoint PPT presentation

Number of Views:301
Avg rating:3.0/5.0
Slides: 31
Provided by: ASU68
Category:

less

Transcript and Presenter's Notes

Title: Chapter 2 Trigonometric Functions


1
Chapter 2Trigonometric Functions
  • 2.1 Degrees and Radians
  • 2.2 Linear and Angular Velocity
  • 2.3 Trigonometric Functions
  • Unit Circle Approach
  • 2.4 Additional Applications
  • 2.5 Exact Values and Properties of
  • Trigonometric Functions

2
2.1 Degrees and Radians
  • Degree and radian measure of angles
  • Angles in standard position
  • Arc length and area of a sector of a circle

3
Radian Measure of Central Angles
  • Example
  • Find the radian measure of the central angle
    subtended by an arc of 32 cm in a circle of
    radius 8 cm.
  • Solution q 32cm/8cm 4 rad

4
Radian-Degree Conversion Formulas
  • Example
  • Find the radian measure of -1.5 rad in terms of p
    and in decimal form to 4 decimal places.
  • Solution qd (qr)(180º/p rad)
  • (-1.5)(180/p) 270º/p -85.9437º

5
Angles in Standard Position
6
Sketching angles in Standard Position
  • Sketch these angles in standard position
  • A. -60º B. 3p/2 rad C. -3p rad D. 405º

7
Coterminal Angles
  • Angles that differ by an integer multiple of 2 p
    or 360º are coterminal.
  • Example
  • Are the angles p/3 rad and 2p/3 rad coterminal?
  • Solution (-p/3) (2p/3) -3p/3 -p No
  • Example
  • Are the angles -135º and 225º coterminal?
  • Solution -135º - (-225º) -1(360)º Yes

8
Area of a Sector of a Circle
  • A ½ r2 q, r radius and q central angle
  • Example
  • In a circle of radius 3 m find the area of the
    sector with central angle 0.4732.
  • Solution A ½ 3m2(0.4732) 2.13 m2

9
2.2 Linear and Angular Velocity
10
Electrical Wind Generator
  • This wind generator has propeller blades 5 m
    long. If the blades are rotating at 8 p rad/sec,
    what is the angular velocity of a point on the
    tip of one blade?
  • Solution V 5 (8p) 126 m/sec

11
2.3 Trigonometric Functions The Unit Circle
Approach
  • Definition of Trigonometric Functions
  • Calculator Evaluation
  • Application
  • Summary of Sign Properties

12
Trigonometric Functions
13
The Unit Circle
  • If a point (a,b) lies on the unit circle, then
    the following are true for the angle x associated
    with that point
  • sin x b
  • cos x a
  • tan x b/a (a ? 0)
  • csc x 1/b (b ? 0)
  • sec x 1/a (a ? 0)
  • cot x a/b (b ? 0)

14
Evaluating Trigonometric Functions
  • Example
  • Find the exact values of the 6 trigonometric
    functions for the point (-4, -3)
  • The Pythagorean Theorem shows that the distance
    from the point to the origin is 5.
  • sin x -3/5
  • cos x -4/5
  • tan x 3/4
  • csc x -5/3
  • sec x -5/4
  • cot x 4/3

15
Using Given Information to Evaluate Trigonometric
Functions
  • Example
  • Given that the terminal side of an angle is in
    Quadrant IV and cos x 3/5 find the remaining
    trigonometric functions.
  • b2 25 9 16, so b 4
  • Sin x 4/5, tan x -4/3, csc x -5/4,
  • sec x 5/3 and cot x -3/4

16
Reciprocal Relationships
17
Calculator Evaluation
  • Set the calculator in the proper mode for each
    method of evaluating trigonometric functions.
    Use degree mode or radian mode.
  • Example
  • Find tan 3.472 rad
  • Solution tan 3.472 rad .3430
  • Example
  • Find csc 192º 47 22
  • Solution csc 192º 47 22
  • 1/ sin 192.7894 -4.517

18
Additional Applications
  • Modeling light waves and refraction
  • Modeling bow waves
  • Modeling sonic booms
  • High-energy physics Modeling particle energy
  • Psychology Modeling perception

19
Light Rays
20
Reflected Light
  • Example
  • What is the angle of incidence a that will cause
    a light beam to be totally reflected?
  • Solution sin a (sin 90º)1/1.33
  • a sin-1 (1/1.33) 48.8º

21
2.5 Exact Values and Properties of Trigonometric
Functions
  • Exact values of trigonometric functions at
    special angles
  • Reference triangles
  • Periodic functions
  • Fundamental identities

22
Special Angles
23
Using Special Angles for Points (a,b)
  • Example
  • Find sec 5p/4
  • Solution (a, b) (-1/v2, -1/v2)
  • sec 5p/4 1/a -v2
  • Example
  • Find sin 135º
  • Solution (a, b) (-1/v2, 1/v2)
  • sin 135º b 1/v2

24
Angles on the Unit Circle
25
Using Special Angles for Points (a,b)
  • Example
  • Find sin 7p/6
  • Solution (a, b) (-v3/2, -1/2)
  • sin 7p/6 b -1/2

26
Reference Triangle and Reference Angle
27
Reference Triangles and Angles
  • Example
  • Sketch the reference triangle and find the
    reference angle a for q -315º.
  • Solution

28
Periodic Functions
  • Adding any integer multiple of 2p to x returns
    the same point on the circle.
  • sin x sin (x 2p)
  • cos x cos (x 2p)
  • If sin x 0.7714 then sin(x 2p) 0.7714

29
Fundamental Identities
  • csc x 1/b 1/sin x
  • sec x 1/a 1/cos x
  • cot x a/b 1/tan x
  • tan x b/a
  • sin x / cos x
  • cot x a/b
  • cos x / sin x
  • sin2x cos2x 1

30
Use of Identities
Claim
Proof
Write a Comment
User Comments (0)
About PowerShow.com