Title: Chapter 2 Trigonometric Functions
1Chapter 2Trigonometric Functions
- 2.1 Degrees and Radians
- 2.2 Linear and Angular Velocity
- 2.3 Trigonometric Functions
- Unit Circle Approach
- 2.4 Additional Applications
- 2.5 Exact Values and Properties of
- Trigonometric Functions
22.1 Degrees and Radians
- Degree and radian measure of angles
- Angles in standard position
- Arc length and area of a sector of a circle
3Radian Measure of Central Angles
- Example
- Find the radian measure of the central angle
subtended by an arc of 32 cm in a circle of
radius 8 cm. - Solution q 32cm/8cm 4 rad
4Radian-Degree Conversion Formulas
- Example
- Find the radian measure of -1.5 rad in terms of p
and in decimal form to 4 decimal places. - Solution qd (qr)(180º/p rad)
- (-1.5)(180/p) 270º/p -85.9437º
5Angles in Standard Position
6Sketching angles in Standard Position
- Sketch these angles in standard position
- A. -60º B. 3p/2 rad C. -3p rad D. 405º
7Coterminal Angles
- Angles that differ by an integer multiple of 2 p
or 360º are coterminal. - Example
- Are the angles p/3 rad and 2p/3 rad coterminal?
- Solution (-p/3) (2p/3) -3p/3 -p No
- Example
- Are the angles -135º and 225º coterminal?
- Solution -135º - (-225º) -1(360)º Yes
8Area of a Sector of a Circle
- A ½ r2 q, r radius and q central angle
- Example
- In a circle of radius 3 m find the area of the
sector with central angle 0.4732. - Solution A ½ 3m2(0.4732) 2.13 m2
92.2 Linear and Angular Velocity
10Electrical Wind Generator
- This wind generator has propeller blades 5 m
long. If the blades are rotating at 8 p rad/sec,
what is the angular velocity of a point on the
tip of one blade? - Solution V 5 (8p) 126 m/sec
112.3 Trigonometric Functions The Unit Circle
Approach
- Definition of Trigonometric Functions
- Calculator Evaluation
- Application
- Summary of Sign Properties
12Trigonometric Functions
13The Unit Circle
- If a point (a,b) lies on the unit circle, then
the following are true for the angle x associated
with that point
- sin x b
- cos x a
- tan x b/a (a ? 0)
- csc x 1/b (b ? 0)
- sec x 1/a (a ? 0)
- cot x a/b (b ? 0)
14Evaluating Trigonometric Functions
- Example
- Find the exact values of the 6 trigonometric
functions for the point (-4, -3) - The Pythagorean Theorem shows that the distance
from the point to the origin is 5.
- sin x -3/5
- cos x -4/5
- tan x 3/4
- csc x -5/3
- sec x -5/4
- cot x 4/3
15Using Given Information to Evaluate Trigonometric
Functions
- Example
- Given that the terminal side of an angle is in
Quadrant IV and cos x 3/5 find the remaining
trigonometric functions. - b2 25 9 16, so b 4
- Sin x 4/5, tan x -4/3, csc x -5/4,
- sec x 5/3 and cot x -3/4
16Reciprocal Relationships
17Calculator Evaluation
- Set the calculator in the proper mode for each
method of evaluating trigonometric functions.
Use degree mode or radian mode. - Example
- Find tan 3.472 rad
- Solution tan 3.472 rad .3430
- Example
- Find csc 192º 47 22
- Solution csc 192º 47 22
- 1/ sin 192.7894 -4.517
18Additional Applications
- Modeling light waves and refraction
- Modeling bow waves
- Modeling sonic booms
- High-energy physics Modeling particle energy
- Psychology Modeling perception
19Light Rays
20Reflected Light
- Example
- What is the angle of incidence a that will cause
a light beam to be totally reflected? - Solution sin a (sin 90º)1/1.33
- a sin-1 (1/1.33) 48.8º
212.5 Exact Values and Properties of Trigonometric
Functions
- Exact values of trigonometric functions at
special angles - Reference triangles
- Periodic functions
- Fundamental identities
22Special Angles
23Using Special Angles for Points (a,b)
- Example
- Find sec 5p/4
- Solution (a, b) (-1/v2, -1/v2)
- sec 5p/4 1/a -v2
- Example
- Find sin 135º
- Solution (a, b) (-1/v2, 1/v2)
- sin 135º b 1/v2
24Angles on the Unit Circle
25Using Special Angles for Points (a,b)
- Example
- Find sin 7p/6
- Solution (a, b) (-v3/2, -1/2)
- sin 7p/6 b -1/2
26Reference Triangle and Reference Angle
27Reference Triangles and Angles
- Example
- Sketch the reference triangle and find the
reference angle a for q -315º. - Solution
28Periodic Functions
- Adding any integer multiple of 2p to x returns
the same point on the circle. - sin x sin (x 2p)
- cos x cos (x 2p)
- If sin x 0.7714 then sin(x 2p) 0.7714
29Fundamental Identities
- csc x 1/b 1/sin x
- sec x 1/a 1/cos x
- cot x a/b 1/tan x
- tan x b/a
- sin x / cos x
- cot x a/b
- cos x / sin x
- sin2x cos2x 1
30Use of Identities
Claim
Proof