Closures and Streams - PowerPoint PPT Presentation

About This Presentation
Title:

Closures and Streams

Description:

Closures and Streams cs7100(Prasad) L11Clos * * Supports code reuse. Substitution model specifies what to compute. Environment model computes it efficiently by only ... – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 29
Provided by: TK61
Learn more at: http://cecs.wright.edu
Category:

less

Transcript and Presenter's Notes

Title: Closures and Streams


1
Closures and Streams
2
Contemporary Interest in Closures
  • The concept of closures was developed in the
    1960s and was first fully implemented in 1975 as
    a language feature in the Scheme programming
    language to support lexically scoped first-class
    functions.
  • Project Lambda makes it easier to write code for
    multi-core processors by adding closures to the
    Java language and extending the Java API to
    support parallelizable operations upon streamed
    data.
  • Rick Hickeys Clojure (a dialect of LISP for Java
    platform) is a pure functional language with
    support for rich set of data structures, and
    constructs for concurrent programming.

3
Models of Evaluation
  • Substitution-based
  • (define (square x) ( x x))
  • ((lambda (x y)
  • ( (square x) (square y)))
  • (- 5 3) 5)
  • ( (square 2) (square 5))
  • ( ( 2 2) ( 5 5))
  • ( 4 25)
  • 29

4
Expression Evaluation Options
  • To evaluate (operator operand1 operand2 operand3
    ...)
  • Applicative-Order Evaluation (call by value)
  • evaluate each of the sub-expressions.
  • apply the leftmost result to the rest.
  • Normal-Order Evaluation (call by name)
  • apply the leftmost (lambda) sub-expression to the
    rest and expand. (Argument sub-expressions get
    evaluated when necessary.)

5
Models of Evaluation
  • Environment-based
  • ((lambda (x y)
  • ( (square x) (square y)))
  • (- 5 3) 5)
  • ( (square x) (square y)) x2,y5
  • ( ( x x) x2,y5
  • ( x x) ) x5,y5
  • ( 4 25)
  • 29

6
An extended example
  • (define square (lambda (x) ( x x)))
  • (define sum-of-squares
  • (lambda (x y)
  • ( (square x) (square y))))
  • (define f (lambda (a)
  • (sum-of-squares ( a 1) ( a 2))))

7
Initial Global Environment
8
Executing (f 5) and (sum-of-squares 6 10)
9
  • Delayed Evaluation THUNKS
  • (define x
  • ( 5 5))
  • x
  • 25
  • (define y
  • (lambda ()
  • ( 5 5))
  • (y)
  • 25
  • Partial Evaluation CURRYING
  • (define add
  • (lambda (x)
  • (lambda (y)
  • ( x y)))
  • (define ad4
  • (add 4))
  • (ad4 8)
  • 12

10
Closure and Models
  • Substitution
  • (lambda (y)
  • ( 4 y)
  • )
  • Substitution model is inadequate for mutable
    data structures.
  • Environment
  • lt (lambda (y)
  • ( x y)) ,
  • x lt- 4 gt
  • Need to distinguish location and contents of
    the location.

11
Modular Designs with Lists
12
Higher-order functions and lists
  • Use of lists and generic higher-order functions
    enable abstraction and reuse
  • Can replace customized recursive definitions with
    more readable definitions built using library
    functions
  • The HOF approach may be less efficient.
  • Promotes MODULAR DESIGNS improves programmer
    productivity

13
  • (define (even-fibs n)
  • (define (next k)
  • (if (gt k n) ()
  • (let ((f (fib k)))
  • (if (even? f)
  • (cons f (next ( k
    1)))
  • (next ( k 1)) )) ))
  • (next 0))
  • Take a number n and construct a list of first n
    even Fibonacci numbers.

14
Abstract Description
  • enumerate integers from 0 to n
  • compute the Fibonacci number for each integer
  • filter them, selecting even ones
  • accumulate the results using cons, starting with
    ()

15
  • (define (filter pred seq)
  • (cond ((null? seq) ())
  • ((pred (car seq))
  • (cons (car seq) (filter pred
    (cdr seq))))
  • (else (filter pred (cdr seq)))
  • ))
  • (define (accumulate op init seq)
  • (if (null? seq) init
  • (op (car seq) (accumulate op init (cdr
    seq)))
  • ))

16
  • (define (enum-interval low high)
  • (if (gt low high) ()
  • (cons low (enum-interval ( low 1) high))
    ))

(define (even-fibs n) (accumulate cons ()
(filter even? (map fib
(enum-interval 0 n)))))
17
Streams Motivation
18
  • Modeling real-world objects (with state) and
    real-world phenomena
  • Use computational objects with local variables
    and implement time variation of states using
    assignments
  • Alternatively, use sequences to model time
    histories of the states of the objects.
  • Possible Implementations of Sequences
  • Using Lists
  • Using Streams
  • Delayed evaluation (demand-based evaluation)
    useful (necessary) when large (infinite)
    sequences are considered.

19
Streams Equational Reasoning
  • (define s (cons 0 s))
  • Illegal. (Solution infinite sequence of 0s.)
  • (0 . (0. (0. (0. ))))
  • (cf. Ada, Pascal,)
  • type s record
  • car integer
  • cdr s
  • end
  • How do we represent potentially infinite
    structures?

20
  • (0.(0.(0. )))
  • (0. Function which when
  • executed generates
  • an infinite structure )
  • Recursive winding and unwinding
  • (0. )
  • (0. )
  • (0. . . . )

21
  • gt(define stream-car car)
  • gt(define (stream-cdr s)
  • ( (cdr s) ) )
  • Unwrap by executing the second.
  • gt(define stream-zeros
  • (cons 0 (lambda()
  • stream-zeros) ) )
  • Wrap by forming closure (thunk).

22
  • gt(define stream-car car)
  • gt(define (stream-cdr s)
  • ( (cadr s) ) )
  • Unwrap by executing the second.
  • gt(define stream-zeros
  • (list 0 (lambda()
  • stream-zeros) ) )
  • Wrap by forming closure (thunk).

23
  • gt(stream-car
  • (stream-cdr stream-zeros) )
  • gt(define (numbers-from n)
  • (cons n
  • (lambda ()
  • (numbers-from ( 1 n))
  • )))
  • gt(define stream-numbers
  • (numbers-from 0)
  • )

24
Recapitulating Stream Primitives
  • (define stream-car car)
  • (define (stream-cdr s)
  • ( (cdr s) ) )
  • (define (stream-cons x s)
  • (cons x ( lambda ( ) s) ) )
  • (define the-empty-stream () )
  • (define stream-null? null?)

25
  • (define (stream-filter p s)
  • (cond ((stream-null? s) the-empty-stream)
  • ((p (stream-car s))
  • (stream-cons (stream-car s)
  • (stream-filter p
    (stream-cdr s))))
  • (else (stream-filter p (stream-cdr
    s)))
  • ))
  • (define (stream-enum-interval low high)
  • (if (gt low high) the-empty-stream
  • (stream-cons low
  • (stream-enum-interval ( 1 low)
    high))))

26
  • (stream-car
  • (stream-cdr
  • (stream-filter prime?
  • (stream-enum-interval 100
    1000))))
  • (define (fibgen f1 f2)
  • (cons f1 (lambda () (fibgen f2 ( f1 f2)))
  • ))
  • (define fibs (fibgen 0 1))

27
Factorial Revisited
  • (define (trfac n)
  • (letrec
  • ( (iter (lambda (i a)
  • (if (zero? i) a
  • (iter (- i 1) ( a i)))))
  • )
  • (iter n 1)
  • )
  • )

28
  • (define (ifac n)
  • (let (( i n ) ( a 1 ))
  • (letrec
  • ( (iter (lambda ()
  • (if (zero? i) a
  • (begin
  • (set! a ( a i))
  • (set! i (- i 1))
  • (iter)
  • ))
  • )
  • )
  • )
  • (iter)
  • )
  • ))

29
Factorial Stream
  • (define (str n r)
  • (cons r (lambda ()
  • (str ( n 1) ( n r))
  • )
  • )
  • )
  • (define sfac (str 1 1))
  • (car ((cdr ((cdr ((cdr sfac)) )) )) )
  • (stream-cdr )
  • Demand driven generation of list elements.
  • Caching/Memoing necessary for efficiency.
  • Avoids assignment.
Write a Comment
User Comments (0)
About PowerShow.com