Vectors, Lists, and Sequences - PowerPoint PPT Presentation

About This Presentation
Title:

Vectors, Lists, and Sequences

Description:

Vectors, Lists, and Sequences Vectors: Outline and Reading The Vector ADT ( 6.1.1) Array-based implementation ( 6.1.2) The Vector ADT The Vector ADT extends the ... – PowerPoint PPT presentation

Number of Views:85
Avg rating:3.0/5.0
Slides: 29
Provided by: scha142
Category:

less

Transcript and Presenter's Notes

Title: Vectors, Lists, and Sequences


1
Vectors, Lists, and Sequences
2
Vectors Outline and Reading
  • The Vector ADT (6.1.1)
  • Array-based implementation (6.1.2)

3
The Vector ADT
  • The Vector ADT extends the notion of array by
    storing a sequence of arbitrary objects
  • An element can be accessed, inserted or removed
    by specifying its rank (number of elements
    preceding it)
  • An exception is thrown if an incorrect rank is
    specified (e.g., a negative rank)
  • Main vector operations
  • elemAtRank(int r) returns the element at rank r
    without removing it
  • replaceAtRank(int r, Object o) replace the
    element at rank r with o
  • insertAtRank(int r, Object o) insert a new
    element o to have rank r
  • removeAtRank(int r) removes the element at rank
    r
  • Additional operations size() and isEmpty()

4
Applications of Vectors
  • Direct applications
  • Sorted collection of objects (simple database)
  • Indirect applications
  • Auxiliary data structure for algorithms
  • Component of other data structures

5
Array-based Vector
  • Use an array V of size N
  • A variable n keeps track of the size of the
    vector (number of elements stored)
  • Operation elemAtRank(r) is implemented in O(1)
    time by returning Vr

N-1
0
V
0
1
2
n
r
6
Array based Vector Insertion
  • In operation insertAtRank(r,o) we need to make
    room for the new element by shifting forward the
    n - r elements Vr, , Vn - 1
  • In the worst case (r 0), this takes O(n) time

V
0
1
2
n
r
V
0
1
2
n
r
V
o
0
1
2
n
r
7
Deletion
  • In operation removeAtRank(r) we need to fill the
    hole left by the removed element by shifting
    backward the n - r - 1 elements Vr 1, , Vn
    - 1
  • In the worst case (r 0), this takes O(n) time

8
Performance
  • In the array based implementation of a Vector
  • The space used by the data structure is O(n)
  • Size(), isEmpty(), elemAtRank(r) and
    replaceAtRank(r,o) run in O(1) time
  • insertAtRank(r,o) and removeAtRank(r) run in O(n)
    time
  • If we use the array in a circular fashion,
    insertAtRank(0,o) and removeAtRank(0) run in O(1)
    time
  • In an insertAtRank(r,o) operation, when the array
    is full, instead of throwing an exception, we can
    replace the array with a larger one

9
Exercise
  • Implement the Deque ADT using Vector functions
  • Deque functions
  • first(), last(), insertFirst(e), insertLast(e),
    removeFirst(), removeLast(), size(), isEmpty()
  • Vector functions
  • elemAtRank( r), replaceAtRank(r,e),
    insertAtRank(r,e), removeAtRank(r ), size(),
    isEmpty()

10
Exercise Solution
  • Implement the Deque ADT using Vector functions
  • Deque functions first(), last(), insertFirst(e),
    insertLast(e), removeFirst(), removeLast(),
    size(), isEmpty()
  • Vector functions elemAtRank( r),
    replaceAtRank(r,e), insertAtRank(r,e),
    removeAtRank(r ), size(), isEmpty()
  • Deque function Realization using Vector
    Functions
  • size() and isEmpty() fcns can simply call Vector
    fcns directly
  • first() gt elemAtRank(0)
  • last() gt elemAtRank(size()-1)
  • insertFirst(e) gt insertAtRank(0,e)
  • insertLast(e) gt insertAtRank(size(), e)
  • removeFirst() gt removeAtRank(0)
  • removeLast() gt removeAtRank(size()-1)

11
STL vector class
  • Functions in the STL vector class (incomplete)
  • Size(), capacity() - return elts in vector,
    elts vector can hold
  • empty() - boolean
  • Operatorr - returns reference to elt at rank r
    (no index check)
  • At( r) - returns reference to elt at rank r
    (index checked)
  • Front(), back() - return references to first/last
    elts
  • push_back(e) - insert e at end of vector
  • pop_back() - remove last elt
  • vector(n) - creates a vector of size n
  • Similarities Differences with books Vector ADT
  • STL assignment vre is equivalent to
    v.replaceAtRank(r,e)
  • No direct STL counterparts of insertAtRank( r)
    removeAtRank( r)
  • STL also provides more general fcns for inserting
    removing from arbitrary positions in the vector
    - these use iterators

12
Iterators
  • An iterator abstracts the process of scanning
    through a collection of elements
  • Methods of the ObjectIterator ADT
  • boolean hasNext()
  • object next()
  • reset()
  • Extends the concept of position by adding a
    traversal capability
  • An iterator is typically associated with an
    another data structure
  • We can augment the Stack, Queue, Vector, and
    other container ADTs with method
  • ObjectIterator elements()
  • Two notions of iterator
  • snapshot freezes the contents of the data
    structure at a given time
  • dynamic follows changes to the data structure

13
Iterators
  • Some functions supported by STL containers
  • begin(), end() - return iterators to beginning or
    end of container
  • insert(I,e) - insert e just before the position
    indicated by iterator I (analogous to our
    insertBefore(p))
  • erase(I) - removes the element at the position
    indicated by I (analogous to our remove(p))
  • The functions can be used to insert/remove
    elements from arbitrary positions in the STL
    vector and list

14
Vector Summary
  • Vector Operation Complexity for Different
    Implementations

Array Fixed-Size or Expandable List Singly or Doubly Linked
RemoveAtRank(r), InsertAtRank(r,o) O(1) Best Case (r0,n) O(n) Worst Case O(n) Average Case ?
elemAtRank(r), ReplaceAtRank(r,o) O(1) ?
Size(), isEmpty() O(1) ?
15
Lists and Sequences
16
Outline and Reading
  • Singly linked list
  • Position ADT (6.2.1)
  • List ADT (6.2.2)
  • Sequence ADT (6.3.1)
  • Implementations of the sequence ADT (6.3.2-3)
  • Iterators (6.2.5)

17
Position ADT
  • The Position ADT models the notion of place
    within a data structure where a single object is
    stored
  • A special null position refers to no object.
  • Positions provide a unified view of diverse ways
    of storing data, such as
  • a cell of an array
  • a node of a linked list
  • Member functions
  • Object element() returns the element stored at
    this position
  • bool isNull() returns true if this is a null
    position

18
List ADT (6.2.2)
  • The List ADT models a sequence of positions
    storing arbitrary objects
  • establishes a before/after relation between
    positions
  • It allows for insertion and removal in the
    middle
  • Query methods
  • isFirst(p), isLast(p)
  • Generic methods
  • size(), isEmpty()
  • Accessor methods
  • first(), last()
  • before(p), after(p)
  • Update methods
  • replaceElement(p, o), swapElements(p, q)
  • insertBefore(p, o), insertAfter(p, o),
  • insertFirst(o), insertLast(o)
  • remove(p)

19
List ADT
  • Query methods
  • isFirst(p), isLast(p)
  • return boolean indicating if the given position
    is the first or last, resp.
  • Accessor methods
  • first(), last()
  • return the position of the first or last, resp.,
    element of S
  • an error occurs if S is empty
  • before(p), after(p)
  • return the position of the element of S preceding
    or following, resp, the one at position p
  • an error occurs if S is empty, or p is the first
    or last, resp., position

20
List ADT
  • Update Methods
  • replaceElement(p, o)
  • Replace the element at position p with e
  • swapElements(p, q)
  • Swap the elements stored at positions p q
  • insertBefore(p, o), insertAfter(p, o),
  • Insert a new element o into S before or after,
    resp., position p
  • Output position of the newly inserted element
  • insertFirst(o), insertLast(o)
  • Insert a new element o into S as the first or
    last, resp., element
  • Output position of the newly inserted element
  • remove(p)
  • Remove the element at position p from S

21
Exercise
  • Describe how to implement the following list ADT
    operations using a singly-linked list
  • list ADT operations first(), last(), before(p),
    after(p)
  • For each operation, explain how it is implemented
    and provide the running time
  • A singly linked list consists of a sequence of
    nodes
  • Each node stores
  • element
  • link to the next node

22
Exercise
  • Describe how to implement the following list ADT
    operations using a doubly-linked list
  • list ADT operations first(), last(), before(p),
    after(p)
  • For each operation, explain how it is implemented
    and provide the running time
  • Doubly-Linked List Nodes implement Position and
    store
  • element
  • link to previous node
  • link to next node
  • Special head/tail nodes

tail
head
23
Performance
  • In the implementation of the List ADT by means of
    a doubly linked list
  • The space used by a list with n elements is O(n)
  • The space used by each position of the list is
    O(1)
  • All the operations of the List ADT run in O(1)
    time
  • Operation element() of the Position ADT runs in
    O(1) time

24
STL list class
  • Functions in the STL list class
  • size() - return elements in list, empty() -
    boolean
  • front(), back() - return references to first/last
    elements
  • push_front(e), push_back(e) - insert e at
    front/end
  • pop_front(), pop_back() - remove first/last
    element
  • List() - creates an empty list
  • Similarities Differences with books List ADT
  • STL front() back() correspond to first()
    last() except the STL functions return the
    element not its position
  • STL push() pop() are equiv to List ADT insert
    and remove when applied to the beginning end of
    the list
  • STL also provides functions for inserting
    removing from arbitrary positions in the list -
    these use iterators

25
List Summary
  • List Operation Complexity for different
    implementations

List Singly-Linked List Doubly- Linked
first(), last(), after(p) insertAfter(p,o), replaceElement(p,o), swapElements(p,q) O(1) O(1)
before(p), insertBefore(p,o), remove(p) O(n) O(1)
Size(), isEmpty() O(1) O(1)
26
Sequence ADT
  • The Sequence ADT is the union of the Vector and
    List ADTs
  • Elements accessed by
  • Rank, or
  • Position
  • Generic methods
  • size(), isEmpty()
  • Vector-based methods
  • elemAtRank(r), replaceAtRank(r, o),
    insertAtRank(r, o), removeAtRank(r)
  • List-based methods
  • first(), last(), before(p), after(p),
    replaceElement(p, o), swapElements(p, q),
    insertBefore(p, o), insertAfter(p, o),
    insertFirst(o), insertLast(o), remove(p)
  • Bridge methods
  • atRank(r), rankOf(p)

27
Applications of Sequences
  • The Sequence ADT is a basic, general-purpose,
    data structure for storing an ordered collection
    of elements
  • Direct applications
  • Generic replacement for stack, queue, vector, or
    list
  • small database (e.g., address book)
  • Indirect applications
  • Building block of more complex data structures

28
Sequence Implementations
Operation Array List
size, isEmpty 1 1
atRank, rankOf, elemAtRank 1 n
first, last, before, after 1 1
replaceElement, swapElements 1 1
replaceAtRank 1 n
insertAtRank, removeAtRank n n
insertFirst, insertLast 1 1
insertAfter, insertBefore n 1
remove n 1
Write a Comment
User Comments (0)
About PowerShow.com