Title: 1.3
11.3 Properties of Real Numbers
21.3 Properties of Real Numbers
31.3 Properties of Real Numbers
41.3 Properties of Real Numbers
51.3 Properties of Real Numbers
- Real Numbers (R)
-
- Rational
61.3 Properties of Real Numbers
- Real Numbers (R)
-
- Rational (?)
71.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
81.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
-
91.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- Integers
101.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- Integers (-6)
111.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
121.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
-
131.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
- Whole s
141.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
- Whole s (0)
151.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
- (W) Whole s (0)
161.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
- (W) Whole s (0)
-
171.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
- (W) Whole s (0)
- Natural s
181.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
- (W) Whole s (0)
- Natural s (7)
191.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
- (W) Whole s (0)
- (N) Natural s (7)
201.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?)
- (Z) Integers (-6)
- (W) Whole s (0)
- (N) Natural s (1)
211.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?) Irrational
- (Z) Integers (-6)
- (W) Whole s (0)
- (N) Natural s (1)
221.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?) Irrational v 5
- (Z) Integers (-6)
- (W) Whole s (0)
- (N) Natural s (1)
231.3 Properties of Real Numbers
- Real Numbers (R)
-
- (Q) Rational (?) (I) Irrational v 5
- (Z) Integers (-6)
- (W) Whole s (0)
- (N) Natural s (1)
24Example 1
25Example 1
- Name the sets of numbers to which each apply.
26Example 1
- Name the sets of numbers to which each apply.
27Example 1
- Name the sets of numbers to which each apply.
28Example 1
- Name the sets of numbers to which each apply.
- (a) v 16
29Example 1
- Name the sets of numbers to which each apply.
- (a) v 16 4
30Example 1
- Name the sets of numbers to which each apply.
- (a) v 16 4 - N
31Example 1
- Name the sets of numbers to which each apply.
- (a) v 16 4 - N, W
32Example 1
- Name the sets of numbers to which each apply.
- (a) v 16 4 - N, W, Z
33Example 1
- Name the sets of numbers to which each apply.
- (a) v 16 4 - N, W, Z, Q
34Example 1
- Name the sets of numbers to which each apply.
- (a) v 16 4 - N, W, Z, Q, R
35Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185
36Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z
37Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q
38Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
39Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
- v 20
40Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
- v 20 - I, R
41Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
- v 20 - I, R
- (d) -?
42Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
- v 20 - I, R
- (d) -? - Q
43Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
- v 20 - I, R
- (d) -? - Q, R
44Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
- v 20 - I, R
- (d) -? - Q, R
- __
- (e) 0.45
45Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
- v 20 - I, R
- (d) -? - Q, R
- __
- (e) 0.45 - Q
46Example 1
- Name the sets of numbers to which each apply.
- v 16 4 - N, W, Z, Q, R
- -185 - Z, Q, R
- v 20 - I, R
- (d) -? - Q, R
- __
- (e) 0.45 - Q, R
47Properties of Real Numbers
Property Addition Multiplication
Commutative a b b a ab ba
Associative (ab)c a(bc) (ab)c a(bc)
Identity a0 a 0a a1 a 1a
Inverse a(-a) 0 -aa a1 1 1a a a
Distributive a(bc)abac and (bc)abaca a(bc)abac and (bc)abaca
48Example 2
49Example 2
- Name the property used in each equation.
50Example 2
- Name the property used in each equation.
- (a) (5 7) 8 8 (5 7)
-
51Example 2
- Name the property used in each equation.
- (a) (5 7) 8 8 (5 7)
- Commutative Addition
-
52Example 2
- Name the property used in each equation.
- (a) (5 7) 8 8 (5 7)
- Commutative Addition
- (b) 3(4x) (34)x
-
53Example 2
- Name the property used in each equation.
- (a) (5 7) 8 8 (5 7)
- Commutative Addition
- (b) 3(4x) (34)x
- Associative Multiplication
54Example 3
- What is the additive and multiplicative inverse
for -1¾? -
55Example 3
- What is the additive and multiplicative inverse
for -1¾? - Additive -1¾
56Example 3
- What is the additive and multiplicative inverse
for -1¾? - Additive -1¾ 0
57Example 3
- What is the additive and multiplicative inverse
for -1¾? - Additive -1¾ 1¾ 0
58Example 3
- What is the additive and multiplicative inverse
for -1¾? - Additive -1¾ 1¾ 0
- Multiplicative -1¾
59Example 3
- What is the additive and multiplicative inverse
for -1¾? - Additive -1¾ 1¾ 0
- Multiplicative -1¾ 1
60Example 3
- What is the additive and multiplicative inverse
for -1¾? - Additive -1¾ 1¾ 0
- Multiplicative (-1¾)(-4/7) 1