Functional Renormalization (4) - PowerPoint PPT Presentation

About This Presentation
Title:

Functional Renormalization (4)

Description:

... Mouhanna, Tissier nucleation and first order phase ... Berges, wide applications condensed ... Wschebor Solution of partial differential equation : ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 40
Provided by: C809
Category:

less

Transcript and Presenter's Notes

Title: Functional Renormalization (4)


1
Functional Renormalization (4)
2
(No Transcript)
3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
Unification fromFunctional Renormalization
  • fluctuations in d0,1,2,3,...
  • linear and non-linear sigma models
  • vortices and perturbation theory
  • bosonic and fermionic models
  • relativistic and non-relativistic physics
  • classical and quantum statistics
  • non-universal and universal aspects
  • homogenous systems and local disorder
  • equilibrium and out of equilibrium

14
unified description of scalar models for all d
and N
15
Scalar field theory
16
Flow equation for average potential
17
Simple one loop structure nevertheless (almost)
exact
18
Infrared cutoff
19
Wave function renormalization and anomalous
dimension
  • for Zk (f,q2) flow equation is exact !

20
Scaling form of evolution equation
On r.h.s. neither the scale k nor the wave
function renormalization Z appear
explicitly. Scaling solution no dependence on
t corresponds to second order phase transition.
Tetradis
21
unified approach
  • choose N
  • choose d
  • choose initial form of potential
  • run !
  • ( quantitative results systematic derivative
    expansion in second order in derivatives )

22
Flow of effective potential
  • Ising model

CO2
Critical exponents
Experiment
T 304.15 K p 73.8.bar ? 0.442 g cm-2
S.Seide
23
Critical exponents , d3
ERGE world
ERGE world
24
critical exponents , BMW approximation
Blaizot, Benitez , , Wschebor
25
Solution of partial differential equation
yields highly nontrivial non-perturbative
results despite the one loop structure
! Example Kosterlitz-Thouless phase transition
26
Essential scaling d2,N2
  • Flow equation contains correctly the
    non-perturbative information !
  • (essential scaling usually described by vortices)

Von Gersdorff
27
Kosterlitz-Thouless phase transition (d2,N2)
  • Correct description of phase with
  • Goldstone boson
  • ( infinite correlation length )
  • for TltTc

28
Running renormalized d-wave superconducting order
parameter ? in doped Hubbard (-type ) model
TltTc
?
location of minimum of u
Tc
local disorder pseudo gap
TgtTc
- ln (k/?)
C.Krahl,
macroscopic scale 1 cm
29
Renormalized order parameter ? and gap in
electron propagator ?in doped Hubbard model
100 ? / t
?
jump
T/Tc
30
Temperature dependent anomalous dimension ?
?
T/Tc
31
wide applications
  • particle physics
  • gauge theories, QCD
  • Reuter,, Marchesini et al, Ellwanger et al,
    Litim, Pawlowski, Gies ,Freire, Morris et al.,
    Braun , many others
  • electroweak interactions, gauge hierarchy problem
  • Jaeckel, Gies,
  • electroweak phase transition
  • Reuter, Tetradis,Bergerhoff,

32
wide applications
  • gravity
  • asymptotic safety
  • Reuter, Lauscher, Schwindt et al, Percacci et
    al, Litim, Fischer,
  • Saueressig

33
wide applications
  • condensed matter
  • unified description for classical bosons
  • CW , Tetradis , Aoki , Morikawa , Souma, Sumi
    , Terao , Morris , Graeter , v.Gersdorff ,
    Litim , Berges , Mouhanna , Delamotte , Canet ,
    Bervilliers , Blaizot , Benitez , Chatie ,
    Mendes-Galain , Wschebor
  • Hubbard model
  • Baier , Bick,, Metzner et al, Salmhofer et
    al, Honerkamp et al, Krahl , Kopietz et al,
    Katanin , Pepin , Tsai , Strack ,
  • Husemann , Lauscher

34
wide applications
  • condensed matter
  • quantum criticality
  • Floerchinger , Dupuis , Sengupta , Jakubczyk ,
  • sine- Gordon model
  • Nagy , Polonyi
  • disordered systems
  • Tissier , Tarjus , Delamotte , Canet

35
wide applications
  • condensed matter
  • equation of state for CO2 Seide,
  • liquid He4 Gollisch, and He3 Kindermann,
  • frustrated magnets Delamotte, Mouhanna,
    Tissier
  • nucleation and first order phase transitions
  • Tetradis, Strumia,, Berges,

36
wide applications
  • condensed matter
  • crossover phenomena
  • Bornholdt , Tetradis ,
  • superconductivity ( scalar QED3 )
  • Bergerhoff , Lola , Litim , Freire,
  • non equilibrium systems
  • Delamotte , Tissier , Canet , Pietroni ,
    Meden , Schoeller , Gasenzer , Pawlowski , Berges
    , Pletyukov , Reininghaus

37
wide applications
  • nuclear physics
  • effective NJL- type models
  • Ellwanger , Jungnickel , Berges , Tetradis,,
    Pirner , Schaefer , Wambach , Kunihiro , Schwenk
  • di-neutron condensates
  • Birse, Krippa,
  • equation of state for nuclear matter
  • Berges, Jungnickel , Birse, Krippa
  • nuclear interactions
  • Schwenk

38
wide applications
  • ultracold atoms
  • Feshbach resonances
  • Diehl, Krippa, Birse , Gies, Pawlowski ,
    Floerchinger , Scherer , Krahl ,
  • BEC
  • Blaizot, Wschebor, Dupuis, Sengupta,
    Floerchinger

39
end
Write a Comment
User Comments (0)
About PowerShow.com