Title: Entanglement Renormalization
1 Frontiers in Quantum Nanoscience A Sir Mark
Oliphant PITP Conference
Entanglement Renormalization
Noosa, January 2006
Guifre Vidal The University of Queensland
2Introduction
3Outline
- Overview new simulation algorithms for quantum
systems - Time evolution in 1D quantum lattices (e.g. spin
chains) - Entanglement renormalization
4Recent results
time
(Other tools mean field, density functional
theory, quantum Monte Carlo, positive-P
representation...)
5Computational problem
- Simulating N quantum systems on a classical
computer seems to be hard
Hilbert Space dimension
2
16
4
8
small system to test 2D Heisenberg model
(High-T superconductivity)
Hilbert Space dimension 1,267,650,600,228,229,4
01,496,703,205,376
6problems
solutions
7simulation of time evolution in 1D quantum
lattices (spin chains, fermions, bosons,...)
8Entanglement efficient simulations
9Entanglement in 1D systems
- Toy model I (non-critical chain)
correlation length
- Toy model II (critical chain)
10summary
In DMRG, TEBD PEPS, the amount of entanglement
determines the efficiency of the simulation
Entanglement renormalization disentangle the
system
11Entanglement renormalization
Examples
complete disentanglement
12Entanglement renormalization
Multi-scale entanglement renormalization ansatz
(MERA)
13Performance
system size (1D)
time
code
memory
greatest achievements in 13 years according to
S. White
DMRG ( )
Entanglement renormalization ( )
first tests at UQ
Extension to 2D work in progress
14Conclusions