Title: Provably Secure Identity-Based Identification Schemes and Transitive Signatures
1Provably Secure Identity-Based Identification
Schemes and Transitive Signatures
Katholieke Universiteit LeuvenFaculteit
Toegepaste WetenschappenDepartement
Computerwetenschappen
- ir. Gregory Neven
- Advisors Prof. Dr. ir. Frank Piessens
- Prof. Dr. ir. Bart De Decker
2Overview
- Introduction Provable security
- Identity-based identification schemes
- (joint work with Mihir Bellare and Chanathip
Namprempre) - Concept
- Framework of transforms
- Summary of results
- Transitive signatures
- (joint work with Mihir Bellare)
- Concept
- Node certification technique
- Summary of results
- Conclusion
3Standard digital signatures (SS)
Diffie-Hellman, 1976
Kg
1k
(pk,sk)
sk
pk
pk
sk
pk
Sign
Vf
M, s
M
acc/rej
Cryptography study of mathematical techniques
for information security
4Standard identification (SI) schemes
Kg
1k
(pk,sk)
sk
pk
pk
sk
pk
P
V
acc/rej
Cryptography study of mathematical techniques
for information security
5Provable security
- Until 1980s ad-hoc design
- secure until proven insecure
- More recently provable security GMR88
- Step 1 security notion
- meaning of security of the scheme
- Step 2 security proof
- only way to break scheme is by
- solving supposedly hard mathematical problem
- breaking underlying cryptographic building block
- From theoreticians toy to industry-relevant
property -
6Step 1 Security notion
- Desirable properties of signature scheme
- infeasible to compute sk from pk
pk
(M1,s1)(Mn,sn)
sk
7Step 1 Security notion
- even after seeing valid signatures
- on messages chosen by adversary
- Security (uf-cma)
- no reasonable algorithm has non-negligible
probability of winning game
- Desirable properties
- infeasible to compute sk from pk
pk
Sign(sk,)
Mi
F
si
(M,s) such that Vf(pk,M,s)acc
8Step 2 Security proof
- By contradiction
- suppose such algorithm F exists
- then reasonable algorithm A exists that
- solves supposedly hard mathematical problem
- breaks underlying cryptographic building block
hard problem
A
solution
9Mathematically hard problems
- Factoring
- Given N pq where p,q large primes
- Find p,q
- RSA
- Given N pq where p,q large primes
- e where gcd(e,f(N)) 1 and f(N) (p-1)(q-1)
- y ? ZN
- Find x xe y mod N
- Discrete logarithms
- Given p large prime
- g generator of Zp
- y ? Zp
- Find x gx y mod p
- (Also subgroups of Zp, elliptic curves)
10Random oracle model
- Cryptographic hash function H
- one-wayness given y, finding x s.t. H(x) y is
hard - collision-resistance finding x1,x2 s.t. H(x1)
H(x2) is hard - Random oracle model BR93b
- H behaves as an unpredictable, truly random
function - unsatisfiable assumption
- no longer proof, only (good) heuristic
- counterexamples known CGH98, Nie02, GK03,
BBP04 - provable security for practical schemes
- counterexamples mostly contrived
- proof in RO model preferable over ad-hoc design
H
x ? 0,1
y ? 0,1k
11Overview
- Introduction Provable security
- Identity-based identification schemes
- (joint work with Mihir Bellare and Chanathip
Namprempre) - Concept
- Framework of transforms
- Summary of results
- Transitive signatures
- (joint work with Mihir Bellare)
- Concept
- Node certification technique
- Summary of results
- Conclusion
12Identity-based signatures (IBS)
pk
Sign
Vf
M, s
M
acc/rej
13Identity-based signatures (IBS)
Shamir, 1984
MKg
(mpk,msk)
1k
msk
UKg
msk,Alice
uskA
uskA
mpk
uskA
mpk
uskA
mpk, Alice
Sign
Vf
M, s
M
acc/rej
14Identity-based identification (IBI)
Shamir, 1984
MKg
(mpk,msk)
1k
msk
UKg
msk,Alice
uskA
uskA
mpk
uskA
mpk
uskA
mpk, Alice
P
V
acc/rej
15State of the area prior to this work
- IBI schemes
- many proposed FS86, Bet88, GQ89, Gir90, Oka93
- no appropriate security notion
- proofs under non-ID-based notion or entirely
lacking - IBS schemes
- many proposed
- Sha84, FS86, GQ89, SOK00, Pat02, CC03, Hes03,
Yi03 - good security definition CC03
- general transform trapdoor SS to IBS DKXY03
- some gaps remain
16Our contributions
- Security definitions for IBI schemes
- Framework of security-preserving transforms
- Security proofs for 12 scheme families
- by implication through transforms
- by surfacing and proving unanalyzed SI schemes
- by proving as IBI schemes directly (exceptions)
- Attack on 1 scheme family
17Security of IBS and IBI schemes
- IBS schemes uf-cma security CC03
- IBI schemes imp-pa, imp-aa, imp-ca security
- Learning phaseInitialize and corrupt oracles,
see conversation transcripts (pa), interact with
provers sequentially (aa) or in parallel (ca) - Attack phaseImpersonate uncorrupted identity
IDbreak of adversarys choiceOracles blocked of
for ID IDbreak
mpk
Initialize
ID
F
M,ID
Sign(uskID,)
ID
s
Corrupt
uskID
ID,M,s
18The framework
- SI to SS fs-I-2-S
- canonical SI ? SS FS86
SI
IBI
fs-I-2-S
IBS
SS
Theorem SI is imp-pa secure?SS fs-I-2-S(SI)
is uf-cma secure in the random oracle model
AABN02
19The framework
- SI to SS fs-I-2-S
- canonical SI ? SS FS86
- SI to IBI cSI-2-IBI
- convertible SI ? IBI
cSI-2-IBI
SI
IBI
fs-I-2-S
IBS
SS
Theorem SI is imp-xx secure?IBI
cSI-2-IBI(SI) is imp-xx secure in the random
oracle model
20The framework
- SI to SS fs-I-2-S
- canonical SI ? SS FS86
- SI to IBI cSI-2-IBI
- convertible SI ? IBI
- SS to IBS cSS-2-IBS
- convertible SS ? IBS
- generalization of DKXY03
cSI-2-IBI
SI
IBI
fs-I-2-S
cSS-2-IBS
IBS
SS
Theorem SS is uf-cma secure?IBS
cSS-2-IBS(SS) is uf-cma secure in the random
oracle model
21The framework
- SI to SS fs-I-2-S
- canonical SI ? SS FS86
- SI to IBI cSI-2-IBI
- convertible SI ? IBI
- SS to IBS cSS-2-IBS
- convertible SS ? IBS
- generalization of DKXY03
- IBI to IBS fs-I-2-S
- canonical converted IBI ? IBS
- cSS-2-IBS(fs-I-2-S(SI))
fs-I-2-S(cSI-2-IBI(SI)) - not security-preserving for all IBI
cSI-2-IBI
SI
IBI
fs-I-2-S
fs-I-2-S
cSS-2-IBS
IBS
SS
22The framework
- SI to SS fs-I-2-S
- canonical SI ? SS FS86
- SI to IBI cSI-2-IBI
- convertible SI ? IBI
- SS to IBS cSS-2-IBS
- convertible SS ? IBS
- generalization of DKXY03
- IBI to IBS fs-I-2-S
- canonical converted IBI ? IBS
- cSS-2-IBS(fs-I-2-S(SI))
fs-I-2-S(cSI-2-IBI(SI)) - not security-preserving for all IBI
- IBI to IBS efs-IBI-2-IBS
- canonical IBI ? IBS
cSI-2-IBI
SI
IBI
fs-I-2-S
fs-I-2-S
efs-IBI-2-IBS
cSS-2-IBS
IBS
SS
Theorem IBI is imp-pa secure?IBS
efs-IBI-2-IBS(SS) is uf-cma secure in the random
oracle model
23Results for concrete schemes
IBS
SS
IBI
SI
Origin
Name
uf-cma
uf-cma
ca
aa
pa
ca
aa
pa
I
I
I
I
I
P
P
P
IBI, IBS
Fiat-Shamir
I
I
?
I
I
?
P
P
SI, SS
It. Root
I
I
I
I
I
P
P
P
SI, SS
FF
I
I
I
I
I
P
P
P
IBI, IBS
GQ
I
I
I
I
I
P
P
P
SI, IBI, SS
OkRSA
Shamir
I
I
A
A
I
A
A
P
IBS
Shamir
I
I
I
I
I
P
P
P
SI
A
A
A
A
A
A
A
A
SI, IBI
Girault
I
I
A
A
I
A
A
P
IBS
SOK
I
P
I
I
I
P
P
P
IBS
Hess
P
I
I
I
I
P
P
P
IBS
Cha-Cheon
I
I
?
?
I
?
?
P
IBI
Beth
I
I
P
P
P
I
I
I
IBI
OkDL
I
I
P
P
P
I
I
I
SI, IBI
BNNDL
P proved I implied A attacked ?
open problem new contribution
24Overview
- Introduction Provable security
- Identity-based identification schemes
- (joint work with Mihir Bellare and Chanathip
Namprempre) - Concept
- Framework of transforms
- Summary of results
- Transitive signatures
- (joint work with Mihir Bellare)
- Concept
- Node certification technique
- Summary of results
- Conclusion
25Transitive signatures
TKg
(tpk,tsk)
1k
- Message is pair of nodes i,j
- Signing i,j creating and authenticating edge
i,j
TSign
tsk
si,j
i,j
- An authenticated graph grows with time
TVf
tpk
i,j
acc/rej
si,j
2
s2,3
s1,2
3
1
4
5
s4,5
26Transitive signatures
- Additional composition algorithm
TKg
(tpk,tsk)
1k
- Authenticated graph is transitive closure of
directly signed edges
TSign
tsk
si,j
i,j
TVf
tpk
i,j
acc/rej
si,j
2
s2,3
s1,2
Comp
tpk
3
1
s1,3
4
5
s4,5
27Security of transitive signatures
- Standard uf-cma security definition doesnt
apply - composition allows some extent of forgery
- New security goal MR02b
- computationally infeasible to forge signatures
not in transitive closure of the edges signed
directly by the signer - even under chosen-edge attack
tpk
1,2
F
s1,2
2,3
TSign (tsk,,)
s2,3
4,5
s4,5
1,4, s1,4
28Node certification technique
- For each node i, the signer
2
1
3
29Eliminating node certificates
- For each node i, the signer
y2
- computes public label yi H(i)
2
1
3
y1
y3
30Scheme contributions
Signature length
Random oracle?
Security assumptions
Scheme
Trivial
O(path)
No
Security of SS scheme
4416 bits (SDL)2708 bits (EC)
No
Security of SS schemeDiscrete logarithms
DL-TS
5120 bits
No
Security of SS schemeOne-more RSA
RSA-TS
5120 bits
No
Security of SS schemeFactoring
Fact-TS
4256 bits (SDL)2548 bits (EC)
No
Security of SS schemeOne-more discrete logarithms
DL1m-TS
2558 bits
No
Security of SS schemeOne-more Gap-DH
Gap-TS
1024 bits
Yes
One-more RSA
RSAH-TS
1024 bits
Yes
Factoring
FactH-TS
170 bits
Yes
One-more Gap-DH
GapH-TS
SDL subgroup discrete log EC elliptic
curve new contribution
31Overview
- Introduction Provable security
- Identity-based identification schemes
- (joint work with Mihir Bellare and Chanathip
Namprempre) - Concept
- Framework of transforms
- Summary of results
- Transitive signatures
- (joint work with Mihir Bellare)
- Concept
- Node certification technique
- Summary of results
- Conclusion
32Summary of contributions
- Identity-based identification and signature
schemes - Security notion for IBI schemes
- Framework of security-preserving transforms
- Proofs for 12 scheme families, attack for 1
family - Direct proofs as IBI schemes for 2 families
- Transitive signature schemes
- Security proof for RSA-TS scheme
- New provably secure schemes based on factoring,
discrete logarithms and Gap-DH groups - Hash-based technique to eliminate node
certificates
33Open problems
- Open problems in proofs for IBI/IBS schemes
- Tighter bounds for IBI/IBS schemes through direct
proofs - Provably secure identity-based cryptography
without random oracles - Directed transitive signatures
- Signature scheme such that
- Sign(sk1,pk2), Sign(sk2,M) ? Sign(sk1,M)
- to compress certificate chains
34Results for concrete schemes
Name-IBS
Name-SS
Name-IBI
Name-SI
Origin
Name
uf-cma
uf-cma
ca
aa
pa
ca
aa
pa
P proved I implied A attacked ?
open problem new contribution
35Results for concrete schemes
Name Origin Name-SI Name-SI Name-SI Name-IBI Name-IBI Name-IBI Name-SS Name-IBS
pa aa ca pa aa ca uf-cma uf-cma
Fiat-Shamir IBI, IBS P P P I I I I I
It. Root SI, SS P P ? I I ? I I
FF SI, SS P P P I I I I I
GQ IBI, IBS P P P I I I I I
OkRSA SI, IBI, SS P P P I I I I I
Shamir IBS P A A I A A I I
Shamir SI P P P I I I I I
Girault SI, IBI A A A A A A A A
SOK IBS P A A I A A I I
Hess IBS P P P I I I P I
Cha-Cheon IBS P P P I I I I P
Beth IBI P ? ? I ? ? I I
OkDL IBI I I I P P P I I
BNNDL SI, IBI I I I P P P I I
P proved I implied A attacked ?
open problem new contribution
36Scheme contributions
Scheme Security assumptions Random oracle? Signature length
Trivial Securiy of SS scheme No O(path)
DL-TS Security of SS schemeDiscrete logarithms No 4416 bits (SDL)2708 bits (EC)
RSA-TS Security of SS schemeOne-more RSA No 5120 bits
Fact-TS Security of SS schemeFactoring No 5120 bits
DL1m-TS Security of SS schemeOne-more discrete logarithms No 4256 bits (SDL)2548 bits (EC)
Gap-TS Security of SS schemeOne-more Gap-DH No 2558 bits
RSAH-TS One-more RSA Yes 1024 bits
FactH-TS Factoring Yes 1024 bits
GapH-TS One-more Gap-DH Yes 170 bits
SDL subgroup discrete log EC elliptic
curve new contribution
37Scheme contributions
Signature length
Random oracle?
Security assumptions
Scheme
SDL subgroup discrete log EC elliptic
curve new contribution