Probing the Nucleus with Ultra-Peripheral Collisions - PowerPoint PPT Presentation

About This Presentation
Title:

Probing the Nucleus with Ultra-Peripheral Collisions

Description:

Probing the Nucleus with Ultra-Peripheral Collisions Spencer Klein, LBNL (for the STAR Collaboration) Ultra-peripheral Collisions: What and Why – PowerPoint PPT presentation

Number of Views:80
Avg rating:3.0/5.0
Slides: 23
Provided by: Prefer3
Learn more at: https://www.star.bnl.gov
Category:

less

Transcript and Presenter's Notes

Title: Probing the Nucleus with Ultra-Peripheral Collisions


1
Probing the Nucleus with Ultra-Peripheral
Collisions
Spencer Klein, LBNL (for the STAR Collaboration)
  • Ultra-peripheral Collisions What and Why
  • Photoproduction as a nuclear probe
  • STAR Results at 130 GeV/nucleon
  • Au Au --gt Au Au r0
  • r0 production with nuclear excitation
  • Direct pp- production interference
  • A peek at 200 GeV/nucleon beyond
  • Conclusions

2
Coherent Interactions
  • b gt 2RA
  • no hadronic interactions
  • ltbgt 25-50 fermi at RHIC
  • Ions are sources of fields
  • photons
  • Z2
  • Pomerons or mesons (mostly f0)
  • A 2 (bulk) A 4/3 (surface)
  • Fields couple coherently to ions
  • Photon/Pomeron wavelength l h/pgt RA
  • amplitudes add with same phase
  • P? lt h/RA, 30 MeV/c for heavy ions
  • P lt gh/RA 3 GeV/c at RHIC
  • Strong couplings --gt large cross sections

Au
g, P, or meson
Au
Coupling nuclear form factor
3
Specific Channels
  • Vector meson production
  • gA -- gt r0, w, f, J/y, A
  • Production cross sections --gt s(VN)
  • Vector meson spectroscopy (r, w, f,)
  • Wave function collapse
  • Electromagnetic particle production
  • gg -- gt leptons,mesons
  • Strong Field (nonperturbative?) QED
  • Za 0.6
  • meson spectroscopy Ggg
  • Ggg charge content of scalar/tensor mesons
  • Ggg is small for glueballs

ee-, qq,...
gs
Za 0.6 is Ng gt 1?
4
Exclusive r0 Production
Au
g
qq
Au
  • One nucleus emits a photon
  • The photon fluctuates to a qq pair
  • The pair scatters elastically from the other
    nucleus
  • qq pair emerges as a vector meson
  • s(r) 590 mb 8 of sAuAu at 200 GeV/nucleon
  • 120 Hz production rate at RHIC design luminosity
  • r, w, f, r rates at RHIC all gt 5 Hz
  • J/y , Y, f, w, copiously produced, U a
    challenge

r0
5
Elastic Scattering with Soft Pomerons
  • Glauber Calculation
  • parameterized HERA data
  • Pomeron meson exchange
  • all nucleons are the same
  • s A2 (weak scatter limit)
  • All nucleons participate
  • J/y
  • s A 4/3 (strong scatter limit)
  • Surface nucleons participate
  • Interior cancels (interferes) out
  • s A 5/3 (r0)
  • depends on s(Vp)
  • sensitive to shadowing?

Y 1/2 ln(2k/MV)
6
Elastic Scattering with Hard Pomerons
  • Valid for cc or bb
  • ds/dy s depend on gluon distributions
  • shadowing reduces mid-rapidity ds/dy
  • Effect grows with energy
  • s reduced 50 at the LHC
  • colored glass condensates may have even bigger
    effect

RHIC - Au
No shadowing
HERA param.
ds/dy
Leading Twist Calculation Frankfurt, Strikman
Zhalov, 2001
Shadowed
Y 1/2 ln(2k/MV)
7
Nuclear Excitation
  • Nuclear excitation tags small b
  • Multiple photon exchange
  • Mutual excitation
  • Au decay via neutron emission
  • simple, unbiased trigger
  • Multiple Interactions probable
  • P(r0, b2R) 1 at RHIC
  • P(2EXC, b2R) 30
  • Non-factorizable diagrams are small for AA

8
Interaction Probabilities ds/dy
  • Excitation r0 changes b distribution
  • alters photon spectrum
  • low ltbgt --gt high ltkgt

r0 with gold _at_ RHIC
ds/dy
y
Exclusive - solid X10 for XnXn - dashed X100 for
1n1n - dotted
Baltz, Klein Nystrand (2002)
9
Photoproduction of Open Quarks
  • gA --gt ccX, bbX
  • sensitive to gluon structure function.
  • Higher order corrections problematic
  • Ratio s(gA)/s(gp) --gt shadowing
  • removes most QCD uncertainties
  • Experimentally feasible (?)
  • high rates
  • known isolation techniques
  • Physics backgrounds are gg--gt cc, gg --gt cc
  • gg cross section is small
  • gg background appears controllable by requiring a
    rapidity gap

QQ--gt open charm
g
g
Production occurs in one ion
10
Interference
  • 2 indistinguishable possibilities
  • Interference!!
  • Similar to pp bremsstrahlung
  • no dipole moment, so
  • no dipole radiation
  • 2-source interferometer
  • separation b
  • r,w, f, J/y are JPC 1- -
  • Amplitudes have opposite signs
  • s A1 - A2eipb2
  • b is unknown
  • For pT ltlt 1/ltbgt
  • destructive interference

No Interference
Interference
y0
r0 --gt pp- pT (GeV/c)
11
Entangled Waveforms
e
  • VM are short lived
  • decay before traveling distance b
  • Decay points are separated in space-time
  • no interference
  • OR
  • the wave functions retain amplitudes for all
    possible decays, long after the decay occurs
  • Non-local wave function
  • non-factorizable Yp p- ? Yp Yp-
  • Example of the Einstein-Podolsky-Rosen paradox

J/Y
e-
?
b
J/Y
?
?-
(transverse view)
12
(No Transcript)
13
(No Transcript)
14
r0 Analysis
  • Exclusive Channels
  • r0 and nothing else
  • 2 charged particles
  • net charge 0
  • Coherent Coupling
  • SpT lt 2h/RA 100 MeV/c
  • back to back in transverse plane
  • Backgrounds
  • incoherent photonuclear interactions
  • grazing nuclear collisions
  • beam gas interactions

15
Exclusive r0
  • (prototype) trigger on 2 roughly back-to-back
    tracks
  • 30,000 events in 9 hours
  • 2 tracks in interaction region
  • reject cosmic rays
  • peak for pT lt 150 MeV/c
  • pp and p-p- give background shape
  • pp- pairs from higher multiplicity events have
    similar shape
  • scaled up by 2.1
  • high pT r0 ?
  • asymmetric Mpp peak

Signal region pTlt0.15 GeV
Preliminary
r0 PT
pTlt0.15 GeV
M(pp-)
16
Minimum Bias Dataset
  • Trigger on neutron signals in both ZDCs
  • 800,000 triggers
  • Event selection same as peripheral
  • pp and p-p- model background
  • neutron spectrum has single (1n) and multiple
    (Xn) neutron components
  • Coulomb excitation
  • Xn may include hadronic interactions?
  • Measure s(1n1n) s(XnXn)

Preliminary
r0 PT
ZDC Energy (arbitrary units)
17
Direct p p- production
  • The two processes interfere
  • 1800 phase shift at M(r0)
  • changes p p- lineshape
  • good data with gp (HERA fixed target)
  • pp- r 0 ratio should depend on s(pA)s(rA)
  • decrease as A rises?

18
r0 lineshape
ZEUS gp --gt (r0 pp- )p
STAR gAu --gt (r0 pp- )Au
ds/dMpp (mb/GeV)
ds/dMpp (mb/GeV)
Preliminary
Mpp
Mpp
Fit to r0 Breit-Wigner pp- Interference is
significant pp- fraction is comparable to
ZEUS
ee- and hadronic backgrounds
19
dN/dy for r0(XnXn)
Soft Pomeron, no-shadowing, XnXn
  • r ds/dy are different with and without breakup
  • XnXn data matches simulation
  • Extrapolate to insensitive region

After detector simulation
20
Cross Section Comparison
Baltz, Klein Nystrand (2002)
Preliminary
  • Normalized to 7.2 b hadronic cross section
  • Systematic uncertainties luminosity, overlapping
    events, vertex tracking simulations, single
    neutron selection, etc.
  • Exclusive r0 bootstrapped from XnXn
  • Good agreement
  • factorization works

21
A peek at the 2001 data
  • 200 GeV/nucleon
  • higher ss
  • higher luminosity
  • Production triggers
  • Minimum Bias data
  • 10X statistics
  • Topology Data
  • 50X statistics
  • Physics
  • precision r0 s and pT spectra
  • s(ee-) and theory comparison
  • 4-prong events (r(1450/1700)???)

r0 spectra - 25 of the min-bias data
22
Conclusions
  • RHIC is a high luminosity gg and gA collider
  • Coherent events have distinctive kinematics
  • Photonuclear Interactions probe the nucleus
  • s(AA --gt AAV) is sensitive to s(VA)
  • probes gluon density (shadowing)
  • STAR has observed three peripheral collisions
    processes
  • Au Au -- gt Au Au r0
  • Au Au -- gt Au Au r0
  • The r0direct pp- is similar to gA nteractions
  • The r0 cross sections agree with theoretical
    expectations
Write a Comment
User Comments (0)
About PowerShow.com