Teaching Statistical Concepts with Simulated Data - PowerPoint PPT Presentation

About This Presentation
Title:

Teaching Statistical Concepts with Simulated Data

Description:

Teaching Statistical Concepts with Simulated Data Andrej Blejec National Institute of Biology and University of Ljubljana Ljubljana, Slovenia andrej.blejec_at_nib.si – PowerPoint PPT presentation

Number of Views:79
Avg rating:3.0/5.0
Slides: 173
Provided by: Andrej46
Category:

less

Transcript and Presenter's Notes

Title: Teaching Statistical Concepts with Simulated Data


1
Teaching Statistical Concepts with Simulated Data
  • Andrej Blejec
  • National Institute of Biology andUniversity of
    Ljubljana
  • Ljubljana, Slovenia
  • andrej.blejec_at_nib.si

2
Kinds of data
  • real life data
  • invented data
  • simulated data

3
Real life data
  • interesting for students
  • need subject matter knowledge to interpret
    statistical results
  • oversimplified problems
  • complex problems
  • unclear relevance of statistical results

4
Invented data
  • a collection of data, no story
  • useful mostly for calculation drill
  • no possible interpretation of results
  • uninteresting for students

5
Simulated data
  • sampled from known distribution
  • composed according to prespecified modele.g.
    Y a b X e, with known distribution of X
    and e
  • known statistical propertiese.g. mean, variance,
    regression coefficient
  • analysis results can be compared to true values

6
Goals of teaching statistics
  • interest for statistics
  • understanding of statistical methods
  • skills in use of statistics
  • experiences in analyzing data
  • other ( insert your own ) ___________

7
(No Transcript)
8
Absorption spectrum
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
Least squares estimate of the mean
23
Mean squared deviations
24
Mean squared deviations
25
Mean squared deviations
26
Mean squared deviations
27
Mean squared deviations
28
Mean squared deviations
29
Mean squared deviations
30
Mean squared deviations
31
Mean squared deviations
32
Mean squared deviations
33
Mean squared deviations
34
Mean squared deviations
35
Mean squared deviations
36
(No Transcript)
37
Mean squared deviations
38
Mean squared deviations
39
Mean squared deviations
40
Mean squared deviations
41
Mean squared deviations
42
Mean squared deviations
43
Mean squared deviations
44
Mean squared deviations
45
Mean squared deviations
46
Mean squared deviations
47
Mean squared deviations
48
True mean value µ
LS estimate
Mean squared deviations
49
Maximum likelihood estimation of the mean
50
(No Transcript)
51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
(No Transcript)
58
(No Transcript)
59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
(No Transcript)
67
(No Transcript)
68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
(No Transcript)
80
(No Transcript)
81
(No Transcript)
82
ML estimate
True mean value µ
83
(No Transcript)
84
(No Transcript)
85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
Maximum likelihood estimate of standard deviation
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
93
(No Transcript)
94
(No Transcript)
95
(No Transcript)
96
(No Transcript)
97
(No Transcript)
98
(No Transcript)
99
(No Transcript)
100
(No Transcript)
101
(No Transcript)
102
(No Transcript)
103
(No Transcript)
104
(No Transcript)
105
(No Transcript)
106
(No Transcript)
107
(No Transcript)
108
(No Transcript)
109
(No Transcript)
110
(No Transcript)
111
(No Transcript)
112
(No Transcript)
113
(No Transcript)
114
(No Transcript)
115
(No Transcript)
116
(No Transcript)
117
(No Transcript)
118
(No Transcript)
119
ML estimate
True standard deviation s
120
Hypothesis testingsignificance
121
Hypothesis testingsignificance
or rather a surprise ?
122
(No Transcript)
123
(No Transcript)
124
(No Transcript)
125
(No Transcript)
126
(No Transcript)
127
(No Transcript)
128
(No Transcript)
129
(No Transcript)
130
(No Transcript)
131
(No Transcript)
132
Confidence intervals
133
Weldon, K.L. Statistics A Conceptual Approach..
Prentice-Hall. New York. 1986
134
(No Transcript)
135
(No Transcript)
136
(No Transcript)
137
(No Transcript)
138
(No Transcript)
139
(No Transcript)
140
(No Transcript)
141
(No Transcript)
142
(No Transcript)
143
(No Transcript)
144
(No Transcript)
145
(No Transcript)
146
(No Transcript)
147
(No Transcript)
148
(No Transcript)
149
(No Transcript)
150
(No Transcript)
151
Bad sampling implies bias
152
Bias due to leave max out
153
Confidence intervals for variance
  • Biased and unbiased estimators

154
(No Transcript)
155
(No Transcript)
156
(No Transcript)
157
(No Transcript)
158
(No Transcript)
159
(No Transcript)
160
(No Transcript)
161
(No Transcript)
162
(No Transcript)
163
Confidence intervals for variancewhat if
assumptions are not met?
  • Case of asymetric parent population

164
(No Transcript)
165
(No Transcript)
166
(No Transcript)
167
(No Transcript)
168
(No Transcript)
169
(No Transcript)
170
(No Transcript)
171
(No Transcript)
172
Confidence band in linear regression
173
(No Transcript)
174
(No Transcript)
175
(No Transcript)
176
Coefficient of determination
177
(No Transcript)
178
(No Transcript)
179
(No Transcript)
180
(No Transcript)
181
(No Transcript)
182
(No Transcript)
183
(No Transcript)
184
(No Transcript)
185
Final remarks
  • Graphically supported simulations can - to some
    extent - replace the proofs, usually not
    understandable to non-mathematics majors. Maybe
    they are the answer to some questions
  • "If an audience is not convinced by proof, why do
    proof? (Moore, 1996)
  • Do students need to know the theory or do they
    need to understand the concept? (J Brown and I
    David, ICOTS8, 2010)

186
  • Simulated data have to be combined with real life
    data and projects
  • Simulated data can serve as pure and simple data
    on which we can train our perception for
    statistical results and learn what patterns and
    properties in data can be revealed by applied
    method
  • After such preparation students will be able to
    interpret the real life and subject matter data
    in all their complexity
Write a Comment
User Comments (0)
About PowerShow.com