L - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

L

Description:

Title: An Indicator of the Regional Cycle in Italy Author: benni Last modified by: laboratorio Created Date: 7/25/2006 11:07:11 AM Document presentation format – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 27
Provided by: benni
Category:

less

Transcript and Presenter's Notes

Title: L


1
Lindicatore di attività economica regionale -
RegiosS
Laurea magistrale in statistica economia e
impresa Politica economica corso avanzato - a.a.
2012-2013
  • Federica Benni
  • Lezione del 23 Maggio 2013

2
Gli indicatori di sviluppo economico
  • sono un utile strumento per i policy-maker per
    conoscere ed analizzare le singole realtà
    territoriali
  • di fondamentale importanza per lo studio dello
    sviluppo locale
  • permettono di analizzare le caratteristiche del
    ciclo economico locale e di avere unistantanea
    delle condizioni economiche congiunturali di
    ciascun territorio.

3
I dati regionali disponibili
  • Il prodotto interno lordo è la variabile
    comunemente utilizzata come indicatore della
    crescita economica di un Paese o di una regione
    ma
  • lIstat produce le statistiche dei conti
    economici territoriali con notevole ritardo e a
    cadenza annuale.
  • Però a livello regionale è disponibile un ampio
    set di variabili a frequenza elevata.

4
I dati regionali
  • Indagine sulla fiducia delle imprese (fonte Istat
    - ex Isae)
  • Indagine sulla fiducia dei consumatori (fonte
    Istat ex Isae)
  • Esportazioni e importazioni (fonte Istat)
  • Rilevazione sulle forze di lavoro (fonte Istat)
  • Demografia delle imprese (fonte Unioncamere)
  • Immatricolazioni di automobili (fonte Unrae)
  • Prezzi al consumo (fonte Istat).

5
Indagini sulla fiducia
  • Rilevazione imprese manifatturiere ed estrattive
  • Indagine mensile riferita al mese corrente
  • 18 domande finalizzate ad ottenere una
    valutazione dellandamento delleconomia corrente
    e sulle aspettative delle imprese per il prossimo
    futuro in relazione alle principali variabili
    aziendali.
  • Rilevazione sulla fiducia dei consumatori
  • Indagine mensile riferita al mese corrente
  • 15 domande riguardanti lopinione dei consumatori
    sulla situazione economica generale e personale
  • Serie storiche calcolate per le quattro
    ripartizioni geografiche (Nord Ovest, Nord Est,
    Centro e Mezzogiorno).

6
Dati Istat
  • Esportazioni - Importazioni
  • Serie mensili scaricabili dal sito dellIstat
  • Dati disponibili dal 1991 e aggiornati con circa
    due-tre mesi di ritardo rispetto alla data
    corrente.
  • Rilevazione sulle forze di lavoro
  • Rilevazione continua, i dati vengono raccolti in
    tutte le settimane dellanno
  • Dati diffusi con frequenza trimestrale.
  • Prezzi al consumo
  • Dati a frequenza mensile, pubblicati quindici
    giorni dopo la fine del mese di riferimento.

7
Dati regionali
  • Demografia delle imprese
  • Serie trimestrali delle imprese attive, iscritte
    e cessate presenti sul territorio
  • Dati pubblicati quindici giorni dopo la fine del
    periodo di riferimento e disponibili on-line sul
    sito di Infocamere.
  • Immatricolazioni di automobili
  • Dati mensili disponibili con un ritardo di circa
    un mese rispetto alla data corrente.

8
Variabili utilizzate nellanalisi
9
Trasformazioni effettuate
  • Variabili dellindagine sulla fiducia delle
    imprese e dei consumatori standardizzazione.
  • Prezzi al consumo e dati contesto internazionale
  • 1) Differenze prime,
  • 2) Standardizzazione.
  • Immatricolazioni di automobili
  • 1) Variazione anno/anno,
  • 2) Standardizzazione.

10
Trasformazioni effettuate
  • Dati commercio estero
  • 1) Destagionalizzare i dati,
  • 2) Variazione anno/anno,
  • 3) Standardizzazione delle serie.
  • Dati mercato del lavoro
  • 1) Destagionalizzare i dati,
  • 2) Serie degli occupati variazione anno/anno,
  • 3) Standardizzazione delle sei serie.
  • Dati movimprese
  • 1) Destagionalizzare i dati,
  • 2) Variazione anno/anno,
  • 3) Standardizzazione.

11
Fondamenti metodologici
  • Modelli dinamici fattoriali
  • - Diffusion Indexes (Stock e Watson, 1998)
  • Criteri informativi
  • - Panel Information Criteria (Bai e Ng, 2002)
  • Algoritmo EM (Expectation Maximization)
  • - Stock e Watson 2002

12
Modelli dinamici fattoriali (Stock e Watson,
1998)
  • Siano
  • - yt la serie storica della variabile oggetto
    di studio
  • - Xt una serie storica N-dimensionale che
    contiene
  • informazioni utili per prevedere yt1
  • Xt viene definita dalla struttura fattoriale

13
Modelli dinamici fattoriali (Stock e Watson,
1998)
Se lobiettivo è individuare ,
allora dove
14
Modelli dinamici fattoriali (Stock e Watson,
1998)
  • Modello fattoriale statico , et
    serialmente incorrelati, Ft ed eit mutuamente
    incorrelati ed i.i.d.
  • Modello fattoriale statico approssimato i
    fattori idiosincratici possono essere
    debolmente correlati tra le serie
  • Modello fattoriale dinamico statico è una
    riscrittura di un modello fattoriale dinamico
    standard in modo da rendere statica la matrice
    dei punteggi fattoriali.


15
Modelli dinamici fattoriali (Stock e Watson,
1998)
  • Si assuma che
  • Xt panel bilanciato
  • eit serialmente indipendenti


16
Modelli dinamici fattoriali (Stock e Watson,
1998)
  • Minimizzare
  • Individuare lo stimatore che minimizza il
    quadrato degli scarti, dove


17
Modelli dinamici fattoriali (Stock e Watson,
1998)
  • sono gli elementi che minimizzano la
    funzione obiettivo e soddisfano le seguenti
    condizioni

18
Criterio Informativo (Bai e Ng, 2002)
  • Sia la matrice stimata per un numero k
    di fattori
  • Sia
  • la funzione obiettivo da minimizzare
  • Allora, la scelta del numero corretto k di
    fattori andrà effettuata minimizzando una
    funzione del tipo
  • in cui g è funzione sia di N che di T.

19
Criterio Informativo (Bai e Ng, 2002)

dove
20
Algoritmo EM (Stock e Watson, 2002)
  • Funzione obiettivo da minimizzare
  • dove Iit1 se Xit è un valore osservato e Iit
    0 altrimenti
  • La j-esima iterazione è calcolata come

21
Algoritmo EM (Stock e Watson, 2002)
  • La serie mensile non osservata Xit viene
    misurata solo al tempo aggregato Xqit , dove
  • Xqit (1/11)(Xi,t-11Xi,t-11..Xit) per t
    12, 24, 36
  • e Xqit è un dato mancante per tutti gli altri
    valori di t
  • Nella j-esima iterazione gli elementi del panel
    stimato sono costruiti come
  • se Xit è osservato e
    altrimenti.

22
Individuazione numero dei fattori
1) load c\Emilia.txt x Emilia lags
0 fact 4 2) icp1 log(vkf)fact((nt)/(
nt))log((nt)/(nt)) icp2
log(vkf)fact((nt)/(nt))log(c2nt) icp3
log(vkf)fact(log(c2nt)/c2nt) 3) x
x(1t,) t,n size(x) factors, lam,
ma factloa(x,fact,lags) vartot
trace(diag(ma)) explvar zeros(fact,1)
for j 1fact explvar(j)
ma(n(1lags)-j1)/vartot
23
Numero di fattori estratti
  • Linformazione contenuta nelle 38 variabili è
    stata sintetizzata in
  • 4 fattori Emilia-Romagna, Friuli Venezia
    Giulia, Lazio, Abruzzo
  • 3 fattori Piemonte, Trentino Alto Adige,
    Veneto, Toscana, Umbria, Marche, Basilicata
  • 2 fattori Lombardia, Calabria, Puglia,
    Sardegna, Valle dAosta
  • 1 fattore Liguria, Molise, Campania, Sicilia.

24
Costruzione dellindicatore di attività economica
regionale
  • Fase 1
  • Ristimare il modello fattoriale inserendo i
    valori del Pil annuale e delle 38 variabili,
    applicando lalgoritmo EM per interpolare la
    serie del tasso di crescita del Pil.
  • Fase 2
  • Riapplicare lalgoritmo EM considerando le
    ultime osservazioni del Pil a frequenza mensile
    come dati mancanti
  • Proiettare i tassi di crescita del Pil a
    frequenza mensile fino a dicembre 2012 e
    aggiungere questi dati ai valori ottenuti dalla
    precedente interpolazione.

25
Indicatore di attività economica (Emilia-Romagna)
Fonte nostre elaborazioni su dati Isae, Istat,
Unioncamere e Anfia
26
Bibliografia
Bai J., Ng S. (2002), Determining the Number of
Factors in Approximate Factor Models,
Econometrica Vol. 70, No. 1, pp. 191-221. Benni
F., Brasili A. (2007), Un indicatore sintetico di
attività economica per le regioni italiane,
Rivista di Economia e Statistica del Territorio,
n.2 maggio-agosto 2006, Ed. Franco Angeli. Stock
J.H., Watson M.W. (1998), Diffusion Indexes,
NBER, Working Paper No. 6702. Stock J.H., Watson
M.W. (2002), Macroeconomic Forecasting Using
Diffusion Indexes, Journal of Business and
Economic Statistics Vol. 20, pp. 147-162. Sito
RegiosS http//www.regioss.it/
Write a Comment
User Comments (0)
About PowerShow.com